Skip to main content
  • Home
  • Development
  • Documentation
  • Donate
  • Operational login
  • Browse the archive

swh logo
SoftwareHeritage
Software
Heritage
Archive
Features
  • Search

  • Downloads

  • Save code now

  • Add forge now

  • Help

  • 711c3b2
  • /
  • src
  • /
  • technical
  • /
  • modifiedddf.md
Raw File Download
Permalinks

To reference or cite the objects present in the Software Heritage archive, permalinks based on SoftWare Hash IDentifiers (SWHIDs) must be used.
Select below a type of object currently browsed in order to display its associated SWHID and permalink.

  • content
  • directory
content badge Iframe embedding
swh:1:cnt:8fcb0a233aac6931688b17b24a659586678d17bf
directory badge Iframe embedding
swh:1:dir:7696d39678e6db4ba664281c8ef17262a2d18a13
Citations

This interface enables to generate software citations, provided that the root directory of browsed objects contains a citation.cff or codemeta.json file.
Select below a type of object currently browsed in order to generate citations for them.

  • content
  • directory
Generate software citation in BibTex format (requires biblatex-software package)
Generating citation ...
Generate software citation in BibTex format (requires biblatex-software package)
Generating citation ...
modifiedddf.md
```@meta
CurrentModule = DataEnvelopmentAnalysis
```

# Modified Directional Distance Function

Based on the data  matrix $(X,Y)$, we calculate the modified directional distance function **MDDF**, (Aparicio et al. 2013), of each observation *o* by solving $n$ times the following linear programming problem:

```math
\begin{aligned}
  & \underset{\beta^x, \beta^y,\lambda_j }{\mathop{\min }}\,\quad \quad \quad \;\ \beta^x + \beta^y   \\
  & \text{subject}\ \text{to}  \\
  & \quad \quad \quad \quad \quad \ \sum_{j=1}^{n}{\lambda_j x_{ij} }\ \le x_{io} - \beta^x {g}_{io}^{-} \qquad i = 1,...,m  \\
  & \quad \quad \quad \quad \quad \ \sum_{j=1}^{n}{\lambda_j y_{rj} }\ \ge y_{ro} + \beta^y {g}_{ro}^{+} \qquad r = 1,...,s \\
  & \quad \quad \quad \quad \quad \ \lambda_j \ge 0 \qquad j = 1,...,n \\ 
  & \quad \quad \quad \quad \quad \ \beta^x \ge 0 \qquad i = 1,...,m  \\
  & \quad \quad \quad \quad \quad \ \beta^y \ge 0 \qquad r = 1,...,s.  \\
\end{aligned}
```

with the following condition when assuming variable returns to scale:
```math
\sum\nolimits_{j=1}^{n}\lambda_j=1
```

In this example we compute the modified directional distance function model under variable returns to scale using ones as directions for both inputs and outputs::
```@example mddf
using DataEnvelopmentAnalysis

X = [2; 4; 8; 12; 6; 14; 14; 9.412];

Y = [1; 5; 8; 9; 3; 7; 9; 2.353];

deamddfvrs = deamddf(X, Y, Gx = :Ones, Gy = :Ones, rts = :VRS)
```

Estimated efficiency scores are returned with the `efficiency` function:
```@example mddf
efficiency(deamddfvrs)
```

Estimated $\beta$ on inputs and outputs are returned with the `efficiency` function:
```@example mddf
efficiency(deamddfvrs, :X)
```

```@example mddf
efficiency(deamddfvrs, :Y)
```

### deamddf Function Documentation

```@docs
deamddf
```

Software Heritage — Copyright (C) 2015–2025, The Software Heritage developers. License: GNU AGPLv3+.
The source code of Software Heritage itself is available on our development forge.
The source code files archived by Software Heritage are available under their own copyright and licenses.
Terms of use: Archive access, API— Contact— JavaScript license information— Web API

back to top