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1 Current Status

Versions of the aster package up through version 0-4.1, which at the time
this document was begun was version on CRAN, were written without a de-
sign document, and it shows, the package having a number of limitations and
other problems. At that time, the development version of the aster pack-
age differed from the CRAN version only by the addition of another family
two.truncated.poisson. None of the design issues had been addressed.

Known design issues (bugs, misfeatures, whatever) are as follows.

1. Representation of families.

2. Representation of graphical model.

3. Data and parameter validity checks.

4. Distinguished point in parameter space.

5. Chain components (multivariate families).

6. Elimination of “individuals”.

7. Starting point for optimization.

8. Constrained parameter spaces.

9. Mixed parameterization.

10. User-specified families.

11. Identifiability.

12. Maximization with respect to non-exponential family parameters.

We take these out of order.

1



2 Elimination of Individuals

This is item 6 on our list. Theoretically, it is trivial. The first submission
of Geyer, Wagenius, and Shaw (2005) had a notion of “individuals.” Data
were indexed Xij where i ran over individuals and j ran over nodes of the
graph. In the second submission it was realized that individuals were super-
fluous, the index i could be removed from the notation, and data indexed
Xj . The graph indicates the dependence structure, including the indepen-
dence of “individuals.” So individuals were a mere convenience. Moreover,
that convenience made the notation (and the computer code) messier and
confused the referee. Models with individuals appeared less general, al-
though they were actually not: the case of an old-style model with precisely
one individual is the same as a new-style model, which has no notion of
individual.

Hence we could make no code changes at all. Individuals are sometimes
a convenience and do no harm, because they can be avoided. But eventually
the code should be changed to match the final version of the paper (whatever
that may look like).

In particular, we should simply eliminate all references to individuals at
all user-visible levels. In the R functions, in their documentation, in the
package vignette. In any new vignettes we write. That is a lot of work.

We could also eliminate all reference to individuals in the C code, but
that is perhaps not worth the trouble. A bunch of

for (i = 0; i < nind; ++i)

loops that always execute exactly once because we always have nind equal
to one, don’t slow anything down. They are just annoying to read. Since
few people will read the C code, it doesn’t really matter.

Eventually, the C code will also have to be rewritten to account for
chain components (Section 5 below). There is no point in two rewrites (one
to eliminate individuals, one to introduce chain components). We should do
both at once.

3 Affine Models

This is item 4 on our list, but it also relates to items 7 and 8. The condi-
tional canonical parameter space Θ or the unconditional canonical parameter
space Φ are convex sets in Rd (Appendix E of Technical Report 644). All
versions of the package to date have assumed Θ = Φ = Rd, since that was the
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case for the families implemented to date (Bernoulli, Poisson, k-truncated
Poisson). Now we want to add negative binomial and k-truncated negative
binomial, for which the (one-dimensional) parameter space is { θ : θ < 0 }.
Hence we run up against constraints, item 8 on our list, and the parameter
space not containing zero, which is item 7 on our list, because the current
versions have the zero vector as the default starting point for optimization
(the user can specify another point, but the default should work). We need
to fix those. For more constrained models, see Section 6 below.

More theoretical and ultimately more important is the notion of canon-
ical linear models, which are described in Section 1.4 of the revised version
of Geyer, Wagenius, and Shaw (2005), are reparameterizations of the form

η = Mβ (1)

where the “linear predictor” η is either the conditional canonical parameter
vector θ or the unconditional canonical parameter vector ϕ depending on
which kind of model is being used, where M is a known matrix called the
model matrix, and β is the new parameter vector. This is like conventional
linear and generalized linear model theory, but we now see that it is com-
pletely bogus (and always was). The idea that if you want an “intercept”
term you add a column of ones to M and thereby add another parameter
(increase the dimension of β) and that is the only way to get an “intercept”
in the model is wrong-headed. For one thing, it assumes that the zero vector
is always a valid parameter value. Now we see it isn’t.

What we need instead is the notion of canonical affine models, which
replace (1) by

η = a + Mβ (2)

where a is a known vector, which we will call the distinguished point of
the parameter space. Note that if a is in the column space of M, that is,
a = Mβ for some β, then (1) and (2) specify the same family of models,
and the extra generality of (2) does nothing. This is the usual case, and
that explains the popularity of linear models.

Sometimes, however, we do not want our distinguished point a to be the
zero vector. We will impose the condition that a is in the parameter space
of the linear predictor, either Θ or Φ as the case may be. Then β = 0 maps
to η = a, and hence β = 0 is again a valid starting point, which solves in
generality item 7 on our list.

We need to see what replacing (1) by (2) does to the rest of aster model
theory. Writing

l̃(β) = l(η) = l(a + Mβ)
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we get

∇l̃(β) = ∇l(η)M

∇2 l̃(β) = MT∇2l(η)M

which are the same formulas as when we define the linear predictor by (1)
except for η being defined differently.

Thus it seems the only changes we need to make to add canonical affine
models are adding a “distinguished point” a argument to the aster function
and changing the evaluation of the linear predictor η.

It is an interesting historical note that my thesis makes a great deal of
fuss about affine versus linear. I guess I forgot. That stuff wasn’t published.
It was too trivial. And it is trivial, but a triviality that conventional statis-
tics botches. We can’t afford the luxury if we are going to have general
exponential families (not just ones whose canonical parameter space is the
whole real line). I just checked the help for the R family function and note
that glm doesn’t handle negative binomial, hence avoids dealing with this
issue.

The alternative of redefining the model (negative binomial, for exam-
ple) so its canonical parameter space contains zero is unappealing. For
one thing, the unconventional parameterization may confuse users. For an-
other, although we can assure the conditional canonical parameter space Θ
contains the zero vector, we cannot assure the unconditional canonical pa-
rameter space Φ contains the zero vector, because the mapping from Θ to
Φ is very complicated.

When the user does not specify a distinguished point, there should be
one provided by the software. This means adding a new function to fam-
ily implementations, or perhaps just a new column in the family branch
table, that provides a usable default, e. g., zero for the families for which
that works, but perhaps −1 for the negative binomial. Collecting all such
defaults into a vector gives a valid conditional canonical parameter value
distinguished point θ. Mapping that to the corresponding unconditional
canonical parameter value ϕ gives a valid distinguished point for uncondi-
tional models.

Note that this will change the behavior of unconditional aster models.
It will change the analysis for the example in Geyer, Wagenius, and Shaw
(2005), which was not changed in the revision! What do we think about
that? Of course, we can always set the distinguished point so that the
analysis does not change, that is, use a = 0 rather than the image of 0
under the mapping θ 7→ ϕ.
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What do we think about that? It does not seem to be a serious problem.
If varbl was in the model, then we are in the case discussed above where a
is in the column space of M and (1) and (2) parameterize the same families
of distributions (though not with the same β in each). Although the “varb”
regression coefficients change, the MLE probability distribution does not. So
we are o. k. Nothing besides those few regression coefficients would change.
The confidence intervals shown in Figure 2 would not change. The P -values
for the tests shown in Table 1 would not change.

One last point about item 8 on our list. If we limit aster to full, regular
exponential families, then if we start at a feasible point (which we will by
default) and if the mlogl function returns list(value = Inf) when called
with a parameter value not in the canonical parameter space (conditional
or unconditional as the case may be), then the default optimizer (my new
trust package) can handle this.

This only works for regular exponential families, whose full canonical pa-
rameter space is an open set, in which case minus the log likelihood converges
to ∞ as the parameter goes to the boundary (a property of exponential fam-
ilies, the log likelihood is upper semicontinuous, so its minus, what mlogl
computes, must either go to infinity or be finite on the boundary, by lower
semicontinuity, and the latter is ruled out by the definition of regularity).
So the solution is never on the boundary, and a trust region algorithm can
deal with the boundary (by always decreasing the trust region whenever the
value Inf is returned by mlogl).

Since nlm and optim cannot handle boundaries well (even this very well
behaved kind). We might as well take them out and make trust the only
allowed optimizer.

Fortunately, brand name exponential families are all regular. We need
not worry about non-regular exponential families.

4 Representation of Families

This is items 1 and 10 on our list. It involves a very BAD (broken as
designed, a hackerism) decision. In versions to date, a family is coded by
an integer, which serves simultaneously as an index for the vector of names
returned by families(), which is

[1] "bernoulli" "poisson" "non.zero.poisson"
[4] "two.trunc.poisson"

in the development version (and the first three in earlier versions) and also
as an index into a branch table myfuntab found in astfam.c, which is a
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static array of struct funtab allocated at compile time.
This is very inflexible. We can see it already in not being able to specify

k-truncated Poisson for arbitrary k. (Why just zero and two? The code is
written for general k, but there is no way to specify a family with an extra
parameter k).

Now we want more families with extra non-exponential-family parame-
ters. We will refer to them here as “hyperparameters” although our meaning
(non-exponential-family) has nothing to do with the conventional Bayesian
usage. Let us list some.

(a) k-truncated Poisson with k a nonnegative integer hyperparameter.

(b) negative binomial with size parameter α a positive real hyperparam-
eter. If ψ is the cumulant function of the geometric family, then we
mean the family with cumulant function αψ.

(c) k-truncated negative binomial with k a nonnegative integer hyperpa-
rameter and size α a positive real hyperparameter (the previous item
truncated).

(d) untruncated Poisson with size parameter r a positive real hyperparam-
eter. If ψ is the cumulant function of the usual Poisson, then we mean
the family with cumulant function rψ. This is equivalent to adding
the constant log r to the conditional canonical parameter, what the
glm function deals with by way of its offset argument.

(e) k-truncated Poisson with k a nonnegative integer hyperparameter and
size r a positive real parameter (the previous item truncated).

(f) binomial with sample size n as a positive integer hyperparameter. If
ψ is the cumulant function of the Bernoulli family, then we mean the
family with cumulant function nψ.

(g) normal location family with scale parameter σ a positive real hyper-
parameter.

(h) gamma scale family with shape parameter α a positive real hyperpa-
rameter. If ψ is the cumulant function of the exponential distribution,
then we mean the family with cumulant function αψ.

This does not even get into multivariate (chain group) families, which are
the subject of Section 5 below.
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In this document we will call any of the above a superfamily. It becomes
a family when all hyperparameters are specified. Negative binomial is a
superfamily; negative binomial with size = 2.22 (and no truncation) is a
family. We can consider Bernoulli both a family and a superfamily: since it
has no hyperparameters, there is no difference.

One further issue, which is item 10. We should allow a new superfamily
to be specified without recompilation. The user should be allowed to code
the cumulant function and its first two derivatives in R as well as a random
variate simulation function, and it should work (assuming the R code is
o. k.) This is not a high priority, but we should allow for the possibility in
our redesign. More on this in Section 10 below.

For our first redesign decision, do we keep integer codes for families or
drop them entirely? Since in any particular analysis, we do not expect to
use many different families, we can keep integer codes if we allow them to
be associated with general family specifications, (like negative binomial with
size = 2.22). But this means if we continue to use these integer codes as in-
dices into a branch table, the branch table (1) cannot be statically allocated
and (2) must have room for hyperparameter values, so (3) different rows of
the table can correspond to families belonging to the same superfamily.

Actually (1) is overkill. It could be statically allocated with room for, say,
100 families, but no arbitrary limits is preferable. Or it could be dynamically
allocated and never freed, although perhaps reallocated if more room is
needed. Actually we should stop this blather and explain the issue we are
struggling with here. There is no problem when the user calls aster to fit
a model. Memory for the branch table could be allocated at the beginning
and released at the end. The problem arises that the mlogl function need
not be called from inside aster, and has some usefulness called from outside.
(I have used it in the Lande-Arnold analysis to calculate Pearson residuals.)
Actually it is not clear this is a problem.

As a user interface issue, we should make the fam argument to aster and
mlogl the same. It is the R way, that these be informative, not integers. So
they can just be passed to mlogl, which can allocate its own branch table.
Arrrghhh!!!!

That was way too bogged down in implementation details. There is no
problem in separating mlogl into two functions, one called from inside aster
and one called from the user level. The user level mlogl should do its own
branch table allocation and deallocation. The non-user level mloglhelper,
which is not exported by the aster package and which is only called from in-
side the objfun defined inside aster.default, need not allocate-deallocate,
since aster.default can handle that.
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Anyway, allocation-deallocation versus static is not a priority. Go with
static and error message for more than 100 families for now.

Similarly, we can go with a fixed upper bound on the number of hy-
perparameters for now. Looks like two would handle all we have in mind.
Could allow more.

So this brings us to the important decision about how the user specifies
families. For reasons of backward compatibility, we would like to allow the
use of numbers with the default coding for numbers 1 to 4 being what we
have now (in the development version, shown above). We should also allow
family specifications something like

list(name = "negative.binomial", shape = 2.22, truncation = 2)

It is a user interface issue that if the truncation argument is missing, then
this means the ordinary untruncated negative binomial. Similarly, we allow

list(name = "poisson")
list(name = "poisson", truncation = 0)
list(name = "poisson", shape = 2.22)
list(name = "poisson", shape = 2.22, truncation = 0)

By analogy, we could allow

list(name = "negative.binomial")

as an untruncated geometric (negative binomial with shape = 1) but perhaps
we should also allow

list(name = "geometric")
list(name = "geometric", truncation = 2)

Probably we should provide constructor functions for these guys. We
must choose names that do not conflict with the constructor functions for
use with glm documented on the help for the family function.

fam.poisson(size = 1, truncation) {
stopifnot(is.numeric(size))
stopifnot(length(size) == 1)
stopifnot(size > 0)
if (missing(truncation)) {

result <- list(name = "poisson", size = size)
} else {

stopifnot(is.numeric(truncation))
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stopifnot(length(truncation) == 1)
stopifnot(truncation == round(truncation))
stopifnot(truncation >= 0)
result <- list(name = "poisson", size = size,

truncation = truncation)
}
class(result) <- "astfam"
return(result)

}

Providing constructor functions allows for defaults and arg matching so
fam.poisson(tr = 2) works, as does fam.poisson(). It also allows for
error checking, so the call fam.poisson(size = - 6) does not work. It
also tags the result with class "astfam" so checks on that are possible fur-
ther down the road. Of course users can fake all of this stuff, but if they
do that, then ipso facto they are experts and deserve whatever happens to
them.

At the top of glm we see

if (is.character(family))
family <- get(family, mode = "function",

envir = parent.frame())
if (is.function(family))

family <- family()
if (is.null(family$family)) {

print(family)
stop("’family’ not recognized")

}

Users can certainly store functions in a list, since they are objects like any
other. We can certainly do the

if (is.function(family))
family <- family()

trick. Presumably we replace the last bit with

if (class(family) != "astfam") {
print(family)
stop("’family’ not recognized")

}
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We can also do the trick with character strings. Of course those strings
are not very natural, fam.poisson and the like. We could make fam bogo-
generic and do something like

fam <- function(string) {
stopifnot(is.character(string))
famfunnam <- paste("fam", "string", sep = ".")
famfun <- get(famfunnam, mode = "function")
if (is.function(famfun)) {

result <- try(famfun())
if (class(result) == "astfam")

return(result)
}
famfun <- get(string, mode = "function")
if (is.function(famfun)) {

result <- try(famfun())
if (class(result) == "astfam")

return(result)
}
print(string)
stop("’family’ not recognized")

}

Now both fam("fam.poisson") and fam("poisson") work. Note that it
is important that we try with the famfunnam first, so we do not call the
poisson function that goes with glm. If the argument string is "poisson",
then we succeed in looking up the function "fam.poisson" and return the
result of that. In any event, since poisson() does not return an object of
class "astfam", we won’t go completely wrong even if we reversed the order,
so long as we check for the result being class "astfam".

Now we can have at the top of aster or whatever needs it

if (is.character(family))
family <- fam(family)

if (is.function(family))
family <- try(family())

if (class(family) != "astfam") {
print(family)
stop("’family’ not recognized")

}
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We haven’t resolved all issues about family representation, but to do
that we need to also look at multivariate families. See Section 5.2 below.

5 Multivariate Families

This is item 5 on our list. Item 2 is also involved. There are two quite
unrelated issues here, which we deal with in two subsections.

5.1 Representation of Graphs

To specify an aster-type chain graph model we need to have an index
set J running over non-root nodes of the graph, which we may take to
be seq(1:nrow(data)), where data is the data frame. Then we need a
partition G of J , which we may represent as a list of lists, call it G in R.
Then we must have

identical(sort(unlist(G)), seq(1, nrow(data)))

in order for G to represent a partition. Finally we need the parent map

p : G → J ∪ F

where F is the set of root nodes. Let us keep the idea that index zero
codes for root, as in current and earlier versions. Then we can repre-
sent p as an integer vector pred of length length(G) taking values in
seq(0, nrow(data)). This says the parent of chain component G[[i]]
is either node pred[i] or is a root node if pred[i] == 0, in which case we
have to look up the data as root[i]. Note that this means the lengths of
pred and root change from nrow(data) (which is what they are in all ver-
sions to date) to length(G), that is, from the cardinality of J (the number
of non-root nodes) to the cardinality of G (the number of chain components).

In versions up to the current version, when p was a map J → J ∪ F so
that every chain component (in the new terminology) was a singleton, we
required

all(pred < seq(along = pred))

to ensure the graph was acyclic. This required the user to assure that parents
came before (lower index) than children in the data. Now the situation is
much more complicated. The analogous check for the new setup would be
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foo <- TRUE
for (i in seq(along = G))

foo <- foo && all(pred[i] < G[[i]])

After the loop foo should still be true (is there a way to do this more
simply?) Of course, this is tricker to explain to users and even trickier for
users to comprehend. Perhaps it is time to bite the bullet and implement
a topological sort for R. A simple algorithm that tests a directed graph
for acyclicity is given by Aho, Hopcroft and Ullman (1983, p. 221). The
Unix function tsort tests a directed graph for acyclicity and produces the
total ordering consistent with the partial ordering if the graph is acyclic.
Curiously, although Unix has always had this main program tsort, neither
Unix nor R has a library function to do this so-called “topological sort”
algorithm. A search of http://r-project.org shows that the contributed
package ggm has a topological sort function topSort but it only works on
directed graphs represented as adjacency matrices (which we don’t want to
deal with). Topological sort is trivial. Just re-implement it. Eventually. It
is not a high priority. We can go with the order restriction above at the
beginning.

5.2 Representation of Families

There is one family for each G ∈ G, hence the list of families is a (list
of lists) of length length(G), that is, the cardinality of G. The i-th family
is a model for the variables at nodes in G[[i]] given the variable at node
pred[i] or given root[i] if pred[i] == 0.

(i) normal location-scale family with canonical statistics that are X and
X2, where X is the variable usually called normal, so the canonical
parameters are θ1 = µ/σ2 and θ2 = −1/2σ2 in terms of the usual
parameters.

(j) gamma shape-scale family with canonical statistics that are X and
logX, where X is the variable usually called gamma, so the canonical
parameters are θ1 = λ and θ2 = α in terms of the usual parameters.

(k) multivariate Bernoulli with canonical statistics X1, . . ., Xk and param-
eter vector θG = (θ1, . . . , θk) in terms of which the success probabilities
(conditional mean value parameters are given by

ξj =
eθj∑k
i=1 e

θi
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(l) multinomial with sample size n as a positive integer hyperparameter.
If ψG is the cumulant function of the multivariate Bernoulli family,
then we mean the family with cumulant function nψG.

Constraints on parameter spaces for these families are discussed in Sec-
tion 6 below.

Of the families discussed, all are identifiable except the multinomial fam-
ilies, (k) and (l), which are the subject of the following section.

For the multinomial families we do not need to specify the number of
categories, the k in the descriptions in items (k) and (l) above, because it is
the cardinality of the chain component G ∈ G with which the family is asso-
ciated. This means that different chain components of different cardinality
can have the same family specification list(name = "multinomial") and
actually be families with different k because the cardinalities of the corre-
sponding G are different. It is clear that the cardinality of G must be at
least two for G to be associated with a multinomial model.

When the cardinality of G is two, and the parent variable Xp(G) is also
Bernoulli, we have the peculiar situation that the elements of the chain
component are each Bernoulli and they satisfy X1 = Xp(G) −X2 (more on
this issue in the following section), but this case cannot be replaced by the
Bernoulli family, because it is a distribution for two nodes in the graph
rather than one. Such a family serves as a “switch” activating either the
descendants of X1 or the descendants of X2 but not both when Xp(G) = 1.

It is clear that the cardinality of G must be exactly two for G to be
associated with a two-parameter normal or gamma model, items (i) and (j)
in our model lists.

5.3 Dropping of Parameters for Multinomial

This is item 11 on our list. A multinomial conditional family for chain
group G satisfies the data constraint∑

j∈G

Xj = Xp(G). (3)

It follows that if we are fitting a conditional model that the vector uG having
components uG,j defined by

uG,j =

{
1, j ∈ G
0, j /∈ G
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is a direction of constancy of the log likelihood, because

〈X,θ + suG〉 = 〈X,θ〉+ sXp(G)

for any scalar s and we may drop the term sXp(G) from the log likelihood
for this model, because Xp(G) is not considered data for this model because
it is conditional.

It follows that if we are fitting an unconditional model but p(G) is a root
node so Xp(G) is constant, that exactly the same analysis holds and uG is a
direction of constancy of the log likelihood.

It follows that if we are fitting an unconditional model and p(G) is not
a root node that the vector vG having components vG,j defined by

vG,j =


1, j ∈ G
−1, j = p(G)
0, otherwise

is a direction of constancy of the log likelihood, because

〈X,ϕ + svG〉 = 〈X,ϕ〉

for any scalar s.
We should perhaps explain for those not familiar with the terminology

that a direction of constancy of a log likelihood l is a vector u such that
l(θ + su) = l(θ) for all s, just the situation we have in both cases above.
Because the log likelihood of an exponential is strictly concave, a direction
of constancy is the only form of non-identifiability an exponential family can
have (which is why we use the concept here).

To unify our treatment of the cases let wG be the direction of constancy,
either uG or vG as the case may be. If the model matrix is M, then we have
non-identifiability if and only if wG is in the column space of M. This follows
from the fact that the Fisher information matrix I(η) has a null eigenvector
w if and only if w is a direction of constancy and the assumption that M has
full rank, and that MT I(η)M is the Fisher information for β. (We concede
this is not the way to write up a proof, but this is not a theory paper. We
should write this up properly somewhere.)

However, it seems from this analysis that the following algorithm fixes
the nonidentifiability problem.

• Add wG as a column of M. If there are multiple multinomial chain
groups, add the wG for each of them.
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• Drop just enough columns of M to obtain a matrix of full rank, drop-
ping none of the added wG.

• Then drop all of the added wG.

The resulting model matrix M is a maximal submatrix of the original M
having the same row dimension subject to the conditions of (1) being full
rank and (2) having no wG in its column space.

All versions of the aster package already drop columns of the model
matrix provided by the R function model.matrix or by the user, which is
not always full rank. This code is in aster.default so it works no matter
how the model matrix is provided. It uses the LINPACK QR decomposi-
tion routines, which provide rank estimation and some information about
redundant columns in the pivoting information. This is not ideal. The exact
arithmetic stuff in the rcdd package would do a perfect job, but we need
to first upgrade the rcdd package to provide an interface to redundancy
elimination and second fix the inability of cddlib to compile on Microsoft.
But for the purposes of this section, how we do redundancy elimination is
irrelevant. The point is that the aster package already must do redundancy
elimination. This doesn’t make the situation any worse than it already is.
We merely have to add some additional redundancy to be eliminated.

5.4 Identifiability for Two-Parameter Normal and Gamma

As is obvious, a two-parameter model is not identifiable when the sample
size is one. Thus we expect that the two-parameter normal and gamma
models, items (i) and (j) on our model lists, are identifiable in the vast
majority of applications, they need not be. Note that one chain group G
with Xp(G) = 1 need not be a problem so long as there is more than one
such group and the model matrix is sensible. An aster model in which every
chain component is two-parameter normal and p(G) = 1 for all G generalizes
ordinary least squares regression. If our model matrix is of the form(

M 0
0 I

)
where M is the what is usually thought of as the model matrix for regression,
the upper block is for all of the first components of the chain groups (θ1 =
µ/σ2, the lower block is for all of the second components (θ2 = −1/2σ2), and
I is the identity matrix, so we homoscedasticity, then everything is the same
as in ordinary regression except that we take no account of error degrees of
freedom (z-tests rather than t-tests, χ2-tests rather than F -tests) and use
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the MLE for σ̂2 dividing by n (the number of chain components) rather than
error degrees of freedom.

I don’t think the lm function in R worries about nonidentifiability (being
unable to estimate the variance because n = 1). Perhaps we should, but it
is not a high priority.

6 Constraints

This is item 8 on our list. It was partly dealt with in Section 3 above.
The main point of this section is to mention all of the models introduced
between here and Section 3 above that have constrained parameter spaces.
All of the negative binomial models, which are items (b) and (c) in our model
lists are one-parameter models with constraint θ < 0. These were mentioned
in Section 3. If we allow list(name = "geometric") as an abbreviation
for list(name = "negative.binomial", size = 1) as was suggested in
Section 4 in the discussion of user-level descriptions of families, then this is,
of course, being a special case of the negative binomial, constrained in the
same way.

The gamma scale family, which is item (h) in our model lists, is a one-
parameter model with constraint θ > 0.

The normal location-scale family, which is item (i) in our model lists, is
a two-parameter model with constraint θ2 < 0 (and θ1 unconstrained).

The gamma shape-scale family, which is item (j) in our model lists, is a
two-parameter model with constraints θ1 > 0 and θ2 > 0.

All of these are regular exponential families, so the constraints do not
need to be explicitly enforced if the optimization software can deal with with
this situation, which was also discussed in Section 3 above (at the end of
the section, on p. 5).

7 Validity Checks

This is item 3 on our list. There is a bug in all versions of aster to data
(or a design misfeature) that the validity checks for aster models are not
fine-grained enough. The problem is hard-wired. For an aster family as
defined in astfam.c there are three functions you can call. One evaluates
ψ(θ) or ψ′(θ), or ψ′′(θ). Another checks data validity. The third simulates
a realization from the model for a specified θ.

The particular problem we are on about here is the data validity check.
When doing prediction of unconditional mean value parameters, we need
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a data validity check that checks whether root data only is valid (because
the prediction is a function of root data only). And this we do not have.
The existing data validity check checks both child and parent data. In
existing versions through the CRAN version we just set the child data to 1
because 1 is always valid for Bernoulli, Poisson, or zero-truncated Poisson.
When we added two-truncated Poisson, this kludge gave errors (at least it
gave a semi-understandable error rather than inexplicable crash). So we
added an additional kludge to work around the lack of the needed validity
check. We really need two validity check functions: one that checks the
parent data for validity and another that checks that the child data (now
possibly multivariate child data if the family is multivariate) given the parent
data. Note that for exponential families data validity does not depend on
parameter values.

Child data checks are not problematic. We always had them, and we
continue to need them. Checks for new families that are brand name distri-
butions are obvious, we just need to implement the checks when we imple-
ment everything else about the family. For less familiar families, the checks
are also obvious from the definition. For k-truncated families, this implies
X > k. For the two-parameter normal we must have X2 > 0. This does not
hold automatically, the user provides a two-dimensional canonical statistic,
the first component of which purports to be X1 + . . .+Xn where n = Xp(G)

and the second component of which purports to be X2
1 + . . .+X2

n. We need
to check that the latter is actually positive. We could further check that
when n = 1 we actually have the first component the square of the second,
or we could not bother to check.

One new data validity issue is mentioned in Section 1.2 of the revised
aster paper (submitted to Biometrika). If the family is infinitely divisible,
then parent data can be any nonnegative real value. If the family is not
infinitely divisible, then parent data can be any nonnegative integer value.
The items in our model lists that are infinitely divisible are item (b) negative
binomial, item (d) Poisson, item item (g) normal-location, and item (h)
gamma-scale.

Note that items (i) and (j), which one might think are infinitely divis-
ible are not. For both the distribution of X is infinitely divisible, but the
canonical statistics for these families, which are vectors, (X,X2) for one
and (X, logX) for the other, do not have infinitely divisible distributions.
Curiously for the normal, both marginal distributions, for X and X2, are
infinitely divisible, but the joint distribution of (X,X2) is not.

No version to date had a parameter validity issue. All models were one-
dimensional and their canonical parameter spaces were the whole real line.
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Now we have constraints. As discussed at the end of Section 3 (p. 5 above)
when evaluating ψG, ∇ψG, and ∇2ψG all parameter values are “valid”, even
those outside the canonical parameter space, we merely need to return Inf
for ψG and NaN for components of the derivatives. The optimization software
needs to be smart enough to deal with this by attempting a smaller step to
some point that is in the parameter space. (Whether this leads to code
changes other than in the function that evaluates the cumulant function
and its derivatives, I do not know. Presumably no other code changes are
necessary, but there may be some assumptions of finiteness somewhere in
the code that I forgot.)

The simulation function does need to check for valid parameter values
and crash with an informative error message if not. So perhaps we should
provide a parameter validity check function, since we need to do the validity
check in two different bits of code (cumulant and simulation) anyway.

8 Mixed Parameterization

This is item 9 on our list. I puzzled for a long time about whether
mixed parameterizations make sense. Barndorff-Nielsen (Information and
Exponential Families, 1978) talks about mixed parameterizations in which
some parameters are canonical and some mean-value. That is not what I
mean. What I mean here is when some canonical parameters are conditional
θ and some are unconditional ϕ.

It is in fact obvious from the discussion the “key” equation of aster
theory, equation (5) in the revised aster manuscript, that if we pick an
arbitrary subset of nodes to make unconditional so their linear predictor is
ηj = ϕj given by the “key” equation and leave the rest of the nodes with
ηj = θj as linear predictor, that if we want to find the θ corresponding to
a η that so long as we solve for children before parents that this solving
merely moves a term from one side of the “key” equation to the other for
those j such that ηj = ϕj and otherwise does nothing.

So mixed parameterizations are possible. Whether they are worth imple-
menting, whether they would be scientifically interesting for any application,
I do not know.

9 MLE of Non-Exponential Family Parameters

This is item 12 on our list. Everything discussed above does not change
the basic notion of aster models that all parameters are exponential family
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parameters. Hyperparameters are not considered parameters. They are
“assumed known.”

If we wanted to maximize over a hyperparameter, the log likelihood cal-
culated by mlogl would be of no help because we drop terms not containing
what we consider to be the parameters (that is, the exponential family pa-
rameters θ). Since we drop terms containing the hyperparameters, the log
likelihood we compute is not the log likelihood when the hyperparameters
are considered parameters.

We could, as a kludge, supposing, for example, we wanted to fit the
size parameter of a negative binomial distribution by maximum likelihood
use the aster model machinery to fit the aster MLE for each value of size
parameter α on a grid of values, then evaluate the log likelihood correctly
(not using the aster package, using dnbinom and perhaps other functions),
and then maximize this one-parameter profile. But ideally we should not
have to kludge this. The aster package should handle this too. But that
would require a lot of changes to the machinery and is not a high priority.

People who like homoscedasticity assumptions would prefer the one-
parameter normal location model, item (g) in our model lists, to the two-
parameter normal model, item (i) in our model lists, if the hyperparameter
σ in the one-parameter family could participate in maximum likelihood, so
that would be one reason to add this feature.

10 User-Specified Superfamilies

This is item 10 on our list. Now that we have the distinction between
families and superfamilies, introduced on p. 6 above. We can see that what
we want to be “user-specified” by writing an implementation in R (to be
called from inside the aster C implementation) is a superfamily. The user
has the same requirements that implementers of superfamilies (in C) now
have. A superfamily has the following tasks

• Calculation of ψ, ψ′, and ψ′′ for a one-parameter family or ψ, ∇ψ, and
∇2ψ for a multi-parameter family.

Note that for either we need all of the hyperparameter values, and
for the latter we also need the dimension (the cardinality of the chain
component). These are provided in the function call.

• Data validity checks. One function checks validity of parent data.
Another checks validity of both parent and child data. (Or the same
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function does both jobs, as in current implementations, but there is a
flag that says check parent data only.)

• Simulation. A function that simulates one realization from the condi-
tional distribution specified by the family (hyperparameters, parame-
ters, and dimension given).

• The superfamily must say what the maximum and minimum values
for the cardinality of a chain component are: both equal to one for an
inherently one-parameter family, both equal to two for an inherently
two-parameter family, two to infinity for a multinomial family.

• The superfamily must say what the number of hyperparameters are.

All of these will need to be specified by R function (for the first three) or
by R data (for the last two).
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