\name{soil} \alias{soil} \title{Soil data of North Bavaria, Germany} \usage{data(soil)} \description{ Soil physical and chemical data collected on a field in the Weissenstaedter Becken, Germany } \format{ This data frame contains the following columns: \describe{ \item{x.coord}{x coordinates given in cm} \item{y.coord}{y coordinates given in cm} \item{nr}{number of the samples, which were taken in this order} \item{moisture}{moisture content [Kg/Kg * 100\%]} \item{NO3.N}{nitrate nitrogen [mg/Kg]} \item{Total.N}{total nitrogen [mg/Kg]} \item{NH4.N}{ammonium nitrogen [mg/Kg]} \item{DOC}{dissolved organic carbon [mg/Kg]} \item{N20N}{nitrous oxide [mg/Kg dried substance]} } } \details{ For technical reasons some of the data were obtained as differences of two measurements (which are not available anymore). Therefore, some of the data have negative values. } \source{ The data were collected by Wolfgang Falk, Soil Physics Group, \url{http://www.geo.uni-bayreuth.de/bodenphysik/Welcome.html}, University of Bayreuth, Germany. } \references{ Falk, W. (2000) \emph{Kleinskalige raeumliche Variabilitaet von Lachgas und bodenchemischen Parameters [Small Scale Spatial Variability of Nitrous Oxide and Pedo-Chemical Parameters]}, Master thesis, University of Bayreuth, Germany. } \examples{ % library(RandomFields, lib="~/TMP"); % library(RandomFields); % source("~/article/R/NEW.RF/RandomFields/R/rf.R") % source("~/article/R/NEW.RF/RandomFields/R/modelling.R") ################################################################ ## ## ## a geostatistical analysis that demonstrates ## ## features of the package `RandomFields' ## ## ## ## *** THIS EXAMPLE IS NOT RUN AUTOMATICALLY *** ## ## *** SINCE IT IS TIME CONSUMING *** ## ## ## ################################################################ data(soil) names(soil) pts <- soil[,c(1,2)] d <- soil$moisture ## define some graphical parameters first close.screen(close.screen()) maxbin <- max(dist(pts)) / 2 (zlim <- range(d)) cn <- 100 colour <- rainbow(cn) par(bg="white",cex=1, cex.lab=1.4, cex.axis=1.4, mar=c(4.3,4.3,0.8,0.8)) lu.x <- min(soil$x) lu.y <- max(soil$y) y <- x <- seq(min(soil$x), max(soil$x), l=121) ## ... and a certain appearance of the legend my.legend <- function(lu.x, lu.y, zlim, col, cex=1) { ## uses already the legend code of R-1.3.0 cn <- length(col) filler <- vector("character", length=(cn-3)/2) legend(lu.x, lu.y, y.i=0.03, x.i=0.1, legend=c(format(zlim[2], dig=2), filler, format(mean(zlim), dig=2), filler, format(zlim[1], dig=2)), lty=1, col=rev(col),cex=cex) } ## plot the data first plot(pts, col=colour[1+(cn-1)*((d-min(d))/diff(zlim))], pch=16, xlab="x [cm]", ylab="y [cm]", cex.axis=1.5, cex.lab=1.5) my.legend(lu.x, lu.y, zlim=zlim, col=colour, cex=1.5) % dev.copy2eps(file="data.eps", width=5, height=5) % source("/home/schlather/article/R/NEW.RF/RandomFields/R/rf.R") ## empirical variogram ev <- EmpiricalVariogram(pts, data=d, grid=FALSE, bin=c(-1,seq(0,maxbin,l=30))) ## show all models, %source("/home/schlather/article/R/NEW.RF/RandomFields/R/ShowModels.R") RFparameters(Print=1, CE.force=TRUE, CE.trials=1, CE.userfft=TRUE) by.eye <- ShowModels(x=x, y=y, emp=ev, col=colour, Zlim=zlim, Mean=mean(d), me="ci") %by.eye<-list(param=c(13.23566, 6.1301215, 2.1624282, 19.9774468, 0.5268569)) %dev.copy2eps(file="ShowModels.eps", width=7, height=7) ## fit parameters of the whittlematern model by MLE %source("/home/schlather/article/R/NEW.RF/RandomFields/R/MLE.R") fit <- fitvario(x=pts, data=d, model="whittle", par=rep(NA,5), mle.m="ml", cross.m=NULL)$variogram ## plot the fitted model and the empirical variogram plot(ev$c, ev$emp.var, ylim=c(0,11), ylab="variogram", xlab="lag") gx <- seq(0.001, max(ev$c), l=100) if(!is.null(by.eye)) lines(gx, Variogram(gx, model=by.eye)) lines(gx, Variogram(gx, model=fit$ml), col=2) lines(gx, Variogram(gx, model=fit$plain), col=3) lines(gx, Variogram(gx, model=fit$sqrt.nr), col=4) lines(gx, Variogram(gx, model=fit$sd.inv), col=5) legend(120, 4, c("empirical", "by eye", "ML", "lsq", "sqrt(n) lsq", "sd^-1 lsq"), lty=c(-1, rep(1, 5)), pch=c(1, rep(-1, 5)), col=c(1, 1, 2, 3, 4, 5), cex=1.4) %dev.copy2eps(file="mle.eps", width=5, height=5) ## map of expected values %source("/home/schlather/article/R/NEW.RF/RandomFields/R/modelling.R") k <- Kriging("O", x=x, y=y, grid=TRUE, model=fit$ml, given=pts, data=d) par(mfrow=c(1,2)) plot(pts, col=colour[1+99*((d-min(d))/diff(zlim))], pch=16, xlab="x [cm]", ylab="y [cm]") my.legend(lu.x, lu.y, zlim=zlim, col=colour, cex=1) image(x, y, k, col=colour, zlim=zlim, xlab="x [cm]", ylab="y [cm]") par(bg="white") %dev.copy2eps(file="kriging.eps", width=5, height=5) %source("/home/schlather/article/R/NEW.RF/RandomFields/R/modelling.R") ## what is the probability that at no point of the ## grid given by x and y the moisture is greater than 24 percent? % works well since fit$ml:nugget==0! RFparameters(Print=1, CE.force=FALSE, CE.trials=3, CE.userfft=TRUE) cs <- CondSimu("O", x=x, y=y, grid=TRUE, model=fit$ml, given=pts, data=d, n=10) # better n=100 or n=1000 par(mfrow=c(2,3)) image(x, y, k, col=colour, zlim=zlim, xlab="x [cm]", ylab="y [cm]") my.legend(lu.x, lu.y, zlim=zlim, col=colour, cex=0.5) for (i in 1:5) image(x, y, cs[, , i], col=colour, zlim=zlim, xlab="x [cm]", ylab="y [cm]") %dev.copy2eps(file="condsimu.eps", width=5, height=5) mean(apply(cs<=24, 3, all)) ## about 40 percent ... } \keyword{datasets}