"""Commonly used utility functions.""" import numpy as np import collections import warnings # parameters for transforming between xyz & lat/lon/alt gps_b = 6356752.31424518 gps_a = 6378137 e_squared = 6.69437999014e-3 e_prime_squared = 6.73949674228e-3 def LatLonAlt_from_XYZ(xyz): """ Calculate lat/lon/alt from ECEF x,y,z. Args: xyz: numpy array, shape (3, Npts), with ECEF x,y,z coordinates Returns: tuple of latitude, longitude, altitude numpy arrays (if Npts > 1) or values (if Npts = 1) in radians & meters """ # convert to a numpy array xyz = np.array(xyz) if xyz.shape[0] != 3: raise ValueError( 'The first dimension of the ECEF xyz array must be length 3') if len(xyz.shape) == 1: Npts = 1 xyz = xyz[:, np.newaxis] else: Npts = xyz.shape[1] # checking for acceptable values if np.any(np.linalg.norm(xyz, axis=0) < 6.35e6) or np.any(np.linalg.norm(xyz, axis=0) > 6.39e6): raise ValueError( 'xyz values should be ECEF x, y, z coordinates in meters') # see wikipedia geodetic_datum and Datum transformations of # GPS positions PDF in docs/references folder gps_p = np.sqrt(xyz[0, :]**2 + xyz[1, :]**2) gps_theta = np.arctan2(xyz[2, :] * gps_a, gps_p * gps_b) latitude = np.arctan2(xyz[2, :] + e_prime_squared * gps_b * np.sin(gps_theta)**3, gps_p - e_squared * gps_a * np.cos(gps_theta)**3) longitude = np.arctan2(xyz[1, :], xyz[0, :]) gps_N = gps_a / np.sqrt(1 - e_squared * np.sin(latitude)**2) altitude = ((gps_p / np.cos(latitude)) - gps_N) if Npts == 1: longitude = longitude[0] latitude = latitude[0] altitude = altitude[0] return latitude, longitude, altitude def XYZ_from_LatLonAlt(latitude, longitude, altitude): """ Calculate ECEF x,y,z from lat/lon/alt values. Args: latitude: latitude in radians, can be a single value or a vector of length Npts longitude: longitude in radians, can be a single value or a vector of length Npts altitude: altitude in meters, can be a single value or a vector of length Npts Returns: numpy array, shape (3, Npts) (if Npts > 1) or (3,) (if Npts = 1), with ECEF x,y,z coordinates """ latitude = np.array(latitude) longitude = np.array(longitude) altitude = np.array(altitude) Npts = latitude.size if longitude.size != Npts: raise ValueError( 'latitude, longitude and altitude must all have the same length') if altitude.size != Npts: raise ValueError( 'latitude, longitude and altitude must all have the same length') # see wikipedia geodetic_datum and Datum transformations of # GPS positions PDF in docs/references folder gps_N = gps_a / np.sqrt(1 - e_squared * np.sin(latitude)**2) xyz = np.zeros((3, Npts)) xyz[0, :] = ((gps_N + altitude) * np.cos(latitude) * np.cos(longitude)) xyz[1, :] = ((gps_N + altitude) * np.cos(latitude) * np.sin(longitude)) xyz[2, :] = ((gps_b**2 / gps_a**2 * gps_N + altitude) * np.sin(latitude)) xyz = np.squeeze(xyz) return xyz def rotECEF_from_ECEF(xyz, longitude): """ Calculate a rotated ECEF from ECEF such that the x-axis goes through the specified longitude. Miriad (and maybe uvfits) expect antenna positions in this frame (with longitude of the array center/telescope location) Args: xyz: numpy array, shape (Npts, 3), with ECEF x,y,z coordinates longitude: longitude in radians to rotate coordinates to (usually the array center/telescope location) Returns: numpy array, shape (Npts, 3), with rotated ECEF coordinates """ angle = -1 * longitude rot_matrix = np.array([[np.cos(angle), -1 * np.sin(angle), 0], [np.sin(angle), np.cos(angle), 0], [0, 0, 1]]) return rot_matrix.dot(xyz.T).T def ECEF_from_rotECEF(xyz, longitude): """ Calculate ECEF from a rotated ECEF such that the x-axis goes through the specified longitude. (Inverse of rotECEF_from_ECEF) Args: xyz: numpy array, shape (Npts, 3), with rotated ECEF x,y,z coordinates longitude: longitude in radians to rotate coordinates to (usually the array center/telescope location) Returns: numpy array, shape (Npts, 3), with ECEF coordinates """ angle = longitude rot_matrix = np.array([[np.cos(angle), -1 * np.sin(angle), 0], [np.sin(angle), np.cos(angle), 0], [0, 0, 1]]) return rot_matrix.dot(xyz.T).T def ENU_from_ECEF(xyz, latitude, longitude, altitude): """ Calculate local ENU (east, north, up) coordinates from ECEF coordinates. Args: xyz: numpy array, shape (3, Npts), with ECEF x,y,z coordinates latitude: latitude of center of ENU coordinates in radians longitude: longitude of center of ENU coordinates in radians altitude: altitude of center of ENU coordinates in radians Returns: numpy array, shape (3, Npts), with local ENU coordinates """ if xyz.shape[0] != 3: raise ValueError( 'The first dimension of the ECEF xyz array must be length 3') if len(xyz.shape) == 1: Npts = 1 else: Npts = xyz.shape[1] # check that these are sensible ECEF values -- their magnitudes need to be # on the order of Earth's radius ecef_magnitudes = np.linalg.norm(xyz, axis=0) sensible_radius_range = (6.35e6, 6.39e6) if np.any(ecef_magnitudes <= sensible_radius_range[0]) or np.any(ecef_magnitudes >= sensible_radius_range[1]): raise ValueError( 'ECEF vector magnitudes must be on the order of the radius of the earth') xyz_center = XYZ_from_LatLonAlt(latitude, longitude, altitude) if Npts == 1: xyz = xyz[:, np.newaxis] xyz_use = np.zeros_like(xyz) xyz_use[0, :] = xyz[0, :] - xyz_center[0] xyz_use[1, :] = xyz[1, :] - xyz_center[1] xyz_use[2, :] = xyz[2, :] - xyz_center[2] xyz = np.squeeze(xyz) enu = np.zeros((3, Npts)) enu[0, :] = (-np.sin(longitude) * xyz_use[0, :] + np.cos(longitude) * xyz_use[1, :]) enu[1, :] = (-np.sin(latitude) * np.cos(longitude) * xyz_use[0, :] - np.sin(latitude) * np.sin(longitude) * xyz_use[1, :] + np.cos(latitude) * xyz_use[2, :]) enu[2, :] = (np.cos(latitude) * np.cos(longitude) * xyz_use[0, :] + np.cos(latitude) * np.sin(longitude) * xyz_use[1, :] + np.sin(latitude) * xyz_use[2, :]) enu = np.squeeze(enu) return enu def ECEF_from_ENU(enu, latitude, longitude, altitude): """ Calculate ECEF coordinates from local ENU (east, north, up) coordinates. Args: enu: numpy array, shape (3, Npts), with local ENU coordinates latitude: latitude of center of ENU coordinates in radians longitude: longitude of center of ENU coordinates in radians Returns: numpy array, shape (3, Npts), with ECEF x,y,z coordinates """ if enu.shape[0] != 3: raise ValueError( 'The first dimension of the local ENU array must be length 3') if len(enu.shape) == 1: Npts = 1 else: Npts = enu.shape[1] xyz = np.zeros((3, Npts)) if Npts == 1: enu = enu[:, np.newaxis] xyz[0, :] = (-np.sin(latitude) * np.cos(longitude) * enu[1, :] - np.sin(longitude) * enu[0, :] + np.cos(latitude) * np.cos(longitude) * enu[2, :]) xyz[1, :] = (-np.sin(latitude) * np.sin(longitude) * enu[1, :] + np.cos(longitude) * enu[0, :] + np.cos(latitude) * np.sin(longitude) * enu[2, :]) xyz[2, :] = (np.cos(latitude) * enu[1, :] + np.sin(latitude) * enu[2, :]) enu = np.squeeze(enu) xyz_center = XYZ_from_LatLonAlt(latitude, longitude, altitude) xyz[0, :] = xyz[0, :] + xyz_center[0] xyz[1, :] = xyz[1, :] + xyz_center[1] xyz[2, :] = xyz[2, :] + xyz_center[2] xyz = np.squeeze(xyz) return xyz def eq2top_m(ha, dec): """Return the 3x3 matrix converting equatorial coordinates to topocentric at the given hour angle (ha) and declination (dec). Borrowed from aipy.""" sin_H, cos_H = np.sin(ha), np.cos(ha) sin_d, cos_d = np.sin(dec), np.cos(dec) mat = np.array([[sin_H, cos_H, np.zeros_like(ha)], [-sin_d * cos_H, sin_d * sin_H, cos_d], [cos_d * cos_H, -cos_d * sin_H, sin_d]]) if len(mat.shape) == 3: mat = mat.transpose([2, 0, 1]) return mat def top2eq_m(ha, dec): """Return the 3x3 matrix converting topocentric coordinates to equatorial at the given hour angle (ha) and declination (dec). Slightly changed from aipy to simply write the matrix instead of inverting.""" sin_H, cos_H = np.sin(ha), np.cos(ha) sin_d, cos_d = np.sin(dec), np.cos(dec) mat = np.array([[sin_H, -cos_H * sin_d, cos_d * cos_H], [cos_H, sin_d * sin_H, -cos_d * sin_H], [np.zeros_like(ha), cos_d, sin_d]]) if len(mat.shape) == 3: mat = mat.transpose([2, 0, 1]) return mat def get_iterable(x): """Helper function to ensure iterability.""" if isinstance(x, collections.Iterable): return x else: return (x,) def fits_gethduaxis(HDU, axis, strict_fits=True): """ Helper function for making axis arrays for fits files. Args: HDU: a fits HDU axis: the axis number of interest strict_fits: boolean If True, require that the axis has cooresponding NAXIS, CRVAL, CDELT and CRPIX keywords. If False, allow CRPIX to be missing and set it equal to zero (as a way of supporting old calfits files). Default is False. Returns: numpy array of values for that axis """ ax = str(axis) N = HDU.header['NAXIS' + ax] X0 = HDU.header['CRVAL' + ax] dX = HDU.header['CDELT' + ax] # add this for calfits backwards compatibility when the CRPIX values were often assumed to be 0 try: Xi0 = HDU.header['CRPIX' + ax] - 1 except(KeyError): if not strict_fits: import calfits calfits._warn_oldcalfits('This file') Xi0 = 0 else: raise return dX * (np.arange(N) - Xi0) + X0 def fits_indexhdus(hdulist): """ Helper function for fits I/O. Args: hdulist: a list of hdus Returns: dictionary of table names """ tablenames = {} for i in range(len(hdulist)): try: tablenames[hdulist[i].header['EXTNAME']] = i except(KeyError): continue return tablenames def polstr2num(pol): """ Convert polarization str to number according to AIPS Memo 117. Args: pol: polarization string Returns: Number corresponding to string """ poldict = {'I': 1, 'Q': 2, 'U': 3, 'V': 4, 'RR': -1, 'LL': -2, 'RL': -3, 'LR': -4, 'XX': -5, 'YY': -6, 'XY': -7, 'YX': -8} if isinstance(pol, str): out = poldict[pol.upper()] elif isinstance(pol, collections.Iterable): out = [poldict[key.upper()] for key in pol] else: raise ValueError('Polarization cannot be converted to index.') return out def polnum2str(num): """ Convert polarization number to str according to AIPS Memo 117. Args: num: polarization number Returns: String corresponding to string """ str_list = ['YX', 'XY', 'YY', 'XX', 'LR', 'RL', 'LL', 'RR', '', 'I', 'Q', 'U', 'V'] if isinstance(num, (int, long, np.int32, np.int64)): out = str_list[num + 8] elif isinstance(num, collections.Iterable): out = [str_list[i + 8] for i in num] else: raise ValueError('Polarization cannot be converted to string.') return out def jstr2num(jstr): """ Convert jones polarization str to number according to calfits memo. Args: jones: antenna polarization string Returns: Number corresponding to string """ jdict = {'jxx': -5, 'jyy': -6, 'jxy': -7, 'jyx': -8, 'xx': -5, 'x': -5, 'yy': -6, 'y': -6, 'xy': -7, 'yx': -8, # Allow shorthand 'jrr': -1, 'jll': -2, 'jrl': -3, 'jlr': -4, 'rr': -1, 'r': -1, 'll': -2, 'l': -2, 'rl': -3, 'lr': -4} if isinstance(jstr, str): out = jdict[jstr.lower()] elif isinstance(jstr, collections.Iterable): out = [jdict[key.lower()] for key in jstr] else: raise ValueError('Jones polarization cannot be converted to index.') return out def jnum2str(jnum): """ Convert jones polarization number to str according to calfits memo. Args: num: polarization number Returns: String corresponding to string """ str_list = ['jyx', 'jxy', 'jyy', 'jxx', 'jlr', 'jrl', 'jll', 'jrr'] if isinstance(jnum, (int, long, np.int32, np.int64)): out = str_list[jnum + 8] elif isinstance(jnum, collections.Iterable): out = [str_list[i + 8] for i in jnum] else: raise ValueError('Polarization cannot be converted to string.') return out def check_history_version(history, version_string): if (version_string.replace(' ', '') in history.replace('\n', '').replace(' ', '')): return True else: return False def check_histories(history1, history2): if (history1.replace('\n', '').replace(' ', '') == history2.replace('\n', '').replace(' ', '')): return True else: return False