
Guide for reproducing the results presented in the

paper “Radial Intersection Count Image: a

Clutter Resistant 3D Shape Descriptor”

Bart Iver van Blokland

July 2020

1 Overview

Greetings!

The repository in front of you contains a (hopefully batteries included) package
for the reproduction of all results presented in the paper. This guide is intended
to be a series of step by step instructions. You should follow them in the order
they are listed.

2 Background

Before we start, we should take a bird’s eye view over all experiments, and the
data produced by them, in the paper’s evaluation. We’ll focus on the bits that
are relevant to determine the validity of reproduced results. For details on the
implemented algorithms themselves, you can refer to the paper.

Clutterbox Experiment

Most of the results in the paper are obtained from what’s referred to as the
‘clutterbox experiment’. In broad terms, it selects 10 3D objects (for instance
a lamp, a plane, a sofa, ..) at random from a large dataset, and using one or
more descriptor algorithms, computes some histograms.

During the experiment, a large number of search result pages of the kind you
might find on Google is generated. When searching for something, you want

1



what you look for to be on top (rank 0), but sometimes can find it further down
the list. The histogram summarises these search results by counting in bin n
how often the desired search result was found a rank n in the list of search
results.

This procedure is repeated for a scene containing 1 object (of the 10 selected)
only, a scene with 5, and one with all 10. In turn, we performed this procedure
on three descriptor algorithms; the Radial Intersection Count Image, the Spin
Image, and the 3D Shape Context.

You will therefore see 1 histogram produced for every combination of object
count and descriptor when running the experiment.

Clutter Estimation

In the paper, Figure 12 contains some heatmaps which require the degree of
‘mess’ (clutter) to be estimated in the vicinity of parts of an object. To visualise
this, consider an empty room on which two identical cups have been placed
at opposite ends. Now hide one of those two cups in between some boxes, a
toothbrush, and some clothes. The degree of clutter surrounding this cup is
said to be higher than that at the other one.

This degree of clutter is measured at each vertex of the 3D object. You will
therefore see a long list of floating point values between 0 and 1, where 0 repre-
sents surroundings that are entirely clean.

Projection Benchmark

The paper proposes a new method for projecting 3D points in a 2D coordinate
space referred to as ‘cylindrical coordinate space’. We created a benchmark
which compares the execution time of a conventional implementation relative
to ours.

3 Preparation

3.1 Install Dependencies

Start the ‘replicate.py’ script found in the root of the repository:

python3 replicate.py

2



You will be greeted with the main menu:

You can navigate these menus using the arrow keys, and press ‘enter’ to select.

The first step is to install all dependencies and download the auxiliary datasets
(which were too large to host on github directly).

At this end, select the top entry called ”Install dependencies”:

We have separated the dependencies into ‘the CUDA SDK’ and ‘everything
that is not the CUDA SDK’, as when CUDA has been installed using the run-
file method from NVidia’s website, installing it through APT can render both
installations unusable.

If you’re installing the project on a fresh installation of Ubuntu, everything
should work out of the box when you use the APT method.

Make sure all dependencies are met before proceeding.

3.2 Download Datasets

Return to the Main Manu, and select the option “2. Download datasets”.

The SHREC 2017 is the dataset containing sample objects used as input for the
Clutterbox experiment.

3



The experimental results consist of all output generated by us while we executed
the Clutterbox experiment and clutter estimation.

Use the script to download each of these. It will automatically download the
archives and extract them in the correct location.

3.3 Compile Project

The next step is to compile the C++/CUDA source code that comes with the
repository. Select the “Compile project” entry in the Main Menu to do so, and
run the ‘cmake’ and ‘make’ entries in order.

If you have installed CUDA through the runfile method, CMake may be unable
to find the CUDA installation. The CMakeLists.txt file located at
src/clutterbox/CMakeLists.txt in the repository contains some lines that man-
ually specify the CUDA SDK location, which can be found near the top of the
file. Uncommenting these should normally do the job.

4 Reproduction of Charts Shown in the Paper

Rather than starting at the beginning of the pipeline, we will first use the results
we computed as part of our evaluation to recreate the charts shown in the paper.
The primary reason for this is that a part of this step also computes an auxiliary
file we need for later.

4.1 Computing the primary results spreadsheet

The first step is to compile the results for the Clutterbox experiment and clutter
estimation, obtained as part of our evaluation, into a spreadsheet from which
the charts can be put together.

At this end, run the “Compile author generated results into spreadsheet” entry
from the Main Menu.

The script produces three things:

4



1. The exact heatmaps shown in Figure 12 in the paper

2. A spreadsheet containing all necessary data to create Figures 10, 11, 13,
and 14, which is written to ‘output/charts spreadsheet.xls’ in the reposi-
tory

3. A mapping file which allows the script to point out which files should be
compared when running the clutterbox experiment

Some other things of note regarding this script:

• The script needs to perform some splitting and merging of different datasets.
It will therefore load all obtained results into memory, which means it con-
sumes a relatively large amount of it.

• You may notice the descriptor name ‘QSI’ being used in places. It was
used as a working title for the RICI descriptor presented in the paper.
We did not feel it was right to backpatch this name into results that had
already been obtained.

• After computing and showing the heatmaps, the script will wait until you
press enter, to allow you to see/save the heatmap images.

• While the paper only presents 1500 results, a set of 1600+ seeds were
used to generate them. When for a given seed a single descriptor+object
count combination is missing (most commonly due to the GPU running
out of VRAM), all other results for that seed are discarded. This allowed
for some margin of error. The final result set has approximately 1560
valid results, and is cut down to 1500. Worth noting is that this uses the
file system ordering (not intentionally so), so we have included an extra
filtering step that ensures the right subset of seeds is used for generating
the charts.

4.2 Reproducing Figures 10, 11, 13, and 14

The spreadsheet ‘output/charts spreadsheet.xls’ created in the previous step
contains one sheet per chart. To recreate the charts, select all columns in the
respective sheet and create an XY scatter plot, ensuring that the x-axis is always
set to the leftmost column.

For comparison, the spreadsheets used by the authors to create the charts shown
in the paper are supplied in the directory
‘output/chart spreadsheets created by authors’. Note that for Figure 13 (gen-
eration rate), the order of the rows in the sheet may be different relative to the
one created by us. However, ultimately the charts themselves should be exactly
the same.

5



5 Reproduction of the data underlying the charts

The aforementioned charts require two sources of data; results from the Clut-
terbox experiment, and the heatmaps require an estimate of clutter in addition.

5.1 Reproducing Clutterbox results

From the Main Menu, select the “Run Clutterbox experiment option”, which
will bring you to the following menu:

If your system has more than one GPU, make sure you use the second to last
option to configure which one to execute kernels on first. The other options
configure parameters of the experiment.

For the results shown in Figure 10, use the following settings:

• Descriptors: rici, si, 3dsc

• Object counts: 1, 5, 10

• Spin Image support angle: 180

For the results shown in Figure 11, use the following settings:

• Descriptors: si

• Object counts: 1, 5, 10

• Spin Image support angle: 60 or 180 (depending on which curve you want
to reproduce)

The random seed used for this experiment determines all randomly chosen pa-
rameter of the experiment (such as the set of objects selected). The top option
in the menu allows you to run a random seed selected from the pool of 1600+
used to generate our results.

6



When the experiment completes, it writes an output file in JSON format. Using
an auxiliary file computed in the previous step, it will also be able to point you
at the specific files from the dataset computed by us:

When interpreting these files, scroll down past the experiment’s metadata to the
[RICI/SI/3DSC]histograms key(s). For the RICI and SI results generated by us,
the entry will contain histograms labelled ‘0’, ‘1’, or ‘2’. These refer to the index
of the list of object counts for that execution of the experiments. You can find
that list in the metadata near the top of the file under the ‘sampleObjectCounts’
key. The 3DSC results and the implementation which comes with this repository
labels these in a more readable way; ‘1 objects’, ‘5 objects’, and ‘10 objects’.

You should compare the histograms you find in the output file produced by the
experiment with those in our results.

One important note here: while the RICI histograms should be completely
the same, there will be slight variations in the histograms of SI and 3DSC.
While we have controlled all variables for the inputs of these methods, due to
these descriptors accumulating floating point numbers, there will inherently be
variations in the final sum due to the GPU accumulating numbers in parallel in
different orders. These differences should nonetheless be small.

We also have some recommendations:

• Keep a terminal window open in the root of the repository, and copy the
paths printed out by the script directly into a parameter of ‘cat’ or ‘vim’.
Finding these specific files in the file manager takes a while.

• Particularly on GPU’s with less VRAM, the experiment has a tendency to
run out of VRAM. You might want to consider only testing one descriptor
at a time, since the results output file is only written if the experiment
executes in full.

• For the same reason, we recommend testing the 10 object results sepa-
rately from those with 1 and 5 objects.

• After running the spreadsheet generation script from the previous step,
you can open the file ‘output/master spreadsheet.xls’, select the sheet
called ‘Total Image Count’, and use this to determine which random seed
will generate many images (and therefore will take long to finish) for a
given object count you’re about to test. If you are very limited in the

7



amount of available VRAM, this can also be used to find random seeds
that are likely to fit.

The timing results can be difficult to reproduce if you do not have the same
GPU model that we used in our experiments (the NVidia Tesla V100 SXM3),
but if you do, the results are all based on scenes with 5 objects, and the spin
image support angle should be set to 180.

5.2 Reproducing clutter estimates

Reproducing the clutter estimate files functions much in the same way as the
Clutterbox ones, and can be found under ‘Run Clutter fraction estimation’ in
the Main Menu. We recommend you use the option to run a random file index;
most of these do not take long to execute on most GPU’s. The script will write
an output file, and point you to the one generated by us. We have not controlled
the random seed used to generate clutter files (not on purpose), but the run to
run variations seem to be within an error of 0.01 (where clutter fractions range
between 0 and 1).

6 Reproduction of Projection Algorithm Bench-
mark

This benchmark is used to compute the results shown in Table 1 in the paper.

From the Main Menu, select ‘Run projection algorithm benchmark’, and let it
run to completion. After testing each method it will print its execution time.
Our method should perform better here than the one we tested against.

It also allocates around 30GB of RAM. It is therefore recommended you ensure
the system has that much available before starting it.

7 Reproduction of Matching Performance Visu-
alisations

Figure 15 and 16 were added to show matching performance of different meth-
ods under specific conditions that occurred. This is accomplished by dumping
textured OBJ files during the execution of the Clutterbox experiment.

8



The final entry in the Main Menu, named ‘Dump result visualisation OBJ files’
allows each of these to reproduced.

Figure 15 shows all combinations of object counts and descriptors. The settings
allow you to generate results for the desired combination of them. For the Spin
Image, however, make sure the support angle is set to 180. The scene OBJs
on the left hand side of each subfigure are generated automatically when the
corresponding object count is selected.

The OBJ files are written to subfolders in ‘output/highlightedobjects’. Opening
them with any 3D object viewer should produce the same images as those shown
in the paper (we used Meshlab for this purpose).

Finally, Figure 16 requires specific settings, which are automatically configured
correctly. It produces OBJ files in a similar fashion to those for Figure 15, and
writes them to the same directory.

9


	Overview
	Background
	Preparation
	Install Dependencies
	Download Datasets
	Compile Project

	Reproduction of Charts Shown in the Paper
	Computing the primary results spreadsheet
	Reproducing Figures 10, 11, 13, and 14

	Reproduction of the data underlying the charts
	Reproducing Clutterbox results
	Reproducing clutter estimates

	Reproduction of Projection Algorithm Benchmark
	Reproduction of Matching Performance Visualisations

