Skip to main content
  • Home
  • Development
  • Documentation
  • Donate
  • Operational login
  • Browse the archive

swh logo
SoftwareHeritage
Software
Heritage
Archive
Features
  • Search

  • Downloads

  • Save code now

  • Add forge now

  • Help

Raw File Download

To reference or cite the objects present in the Software Heritage archive, permalinks based on SoftWare Hash IDentifiers (SWHIDs) must be used.
Select below a type of object currently browsed in order to display its associated SWHID and permalink.

  • content
content badge Iframe embedding
swh:1:cnt:93e77e1badf3b9a9ebfed23b6758f1a7b4317efd

This interface enables to generate software citations, provided that the root directory of browsed objects contains a citation.cff or codemeta.json file.
Select below a type of object currently browsed in order to generate citations for them.

  • content
Generate software citation in BibTex format (requires biblatex-software package)
Generating citation ...
% Generated by roxygen2: do not edit by hand
% Please edit documentation in R/weighted_posteriors.R
\name{weighted_posteriors}
\alias{weighted_posteriors}
\alias{weighted_posteriors.stanreg}
\alias{weighted_posteriors.brmsfit}
\alias{weighted_posteriors.BFBayesFactor}
\title{Generate posterior distributions weighted across models}
\usage{
weighted_posteriors(..., prior_odds = NULL, missing = 0, verbose = TRUE)

\method{weighted_posteriors}{stanreg}(
  ...,
  prior_odds = NULL,
  missing = 0,
  verbose = TRUE,
  effects = c("fixed", "random", "all"),
  component = c("conditional", "zi", "zero_inflated", "all"),
  parameters = NULL
)

\method{weighted_posteriors}{brmsfit}(
  ...,
  prior_odds = NULL,
  missing = 0,
  verbose = TRUE,
  effects = c("fixed", "random", "all"),
  component = c("conditional", "zi", "zero_inflated", "all"),
  parameters = NULL
)

\method{weighted_posteriors}{BFBayesFactor}(
  ...,
  prior_odds = NULL,
  missing = 0,
  verbose = TRUE,
  iterations = 4000
)
}
\arguments{
\item{...}{Fitted models (see details), all fit on the same data, or a single \code{BFBayesFactor} object (see 'Details').}

\item{prior_odds}{Optional vector of prior odds for the models compared to the first model (or the denominator, for \code{BFBayesFactor} objects).}

\item{missing}{An optional numeric value to use if a model does not contain a parameter that appears in other models. Defaults to 0.}

\item{verbose}{Toggle off warnings.}

\item{effects}{Should results for fixed effects, random effects or both be returned?
Only applies to mixed models. May be abbreviated.}

\item{component}{Should results for all parameters, parameters for the conditional model
or the zero-inflated part of the model be returned? May be abbreviated. Only
applies to \pkg{brms}-models.}

\item{parameters}{Regular expression pattern that describes the parameters that
should be returned. Meta-parameters (like \code{lp__} or \code{prior_}) are
filtered by default, so only parameters that typically appear in the
\code{summary()} are returned. Use \code{parameters} to select specific parameters
for the output.}

\item{iterations}{For \code{BayesFactor} models, how many posterior samples to draw.}
}
\value{
A data frame with posterior distributions (weighted across models) .
}
\description{
Extract posterior samples of parameters, weighted across models.
Weighting is done by comparing posterior model probabilities, via \code{\link{bayesfactor_models}}.
}
\details{
Note that across models some parameters might play different roles. For example,
the parameter \code{A} plays a different role in the model \code{Y ~ A + B} (where it is a main effect)
than it does in the model \code{Y ~ A + B + A:B} (where it is a simple effect). In many cases centering
of predictors (mean subtracting for continuous variables, and effects coding via \code{contr.sum} or
orthonormal coding via {\code{\link{contr.bayes}}} for factors) can reduce this issue. In any case
you should be mindful of this issue.
\cr\cr
See \code{\link{bayesfactor_models}} details for more info on passed models.
\cr\cr
Note that for \code{BayesFactor} models, posterior samples cannot be generated from intercept only models.
\cr\cr
This function is similar in function to \code{brms::\link[brms]{posterior_average}}.
}
\examples{
\donttest{
if (require("rstanarm") && require("see")) {
  stan_m0 <- stan_glm(extra ~ 1, data = sleep,
                      family = gaussian(),
                      refresh=0,
                      diagnostic_file = file.path(tempdir(), "df0.csv"))

  stan_m1 <- stan_glm(extra ~ group, data = sleep,
                      family = gaussian(),
                      refresh=0,
                      diagnostic_file = file.path(tempdir(), "df1.csv"))


  res <- weighted_posteriors(stan_m0, stan_m1)

  plot(eti(res))
}

# With BayesFactor and brms
if (require("BayesFactor") && require("brms")) {
  BFmods <- anovaBF(extra ~ group + ID, sleep, whichRandom = "ID")

  res <- weighted_posteriors(BFmods)[1:3]
  plot(eti(res))

  # Compare to brms::posterior_average
  fit1 <- brm(rating ~ treat + period + carry,
              data = inhaler,
              save_all_pars = TRUE)
  fit2 <- brm(rating ~ period + carry,
              data = inhaler,
              save_all_pars = TRUE)

  res_BT <- weighted_posteriors(fit1, fit2)
  res_brms <- brms::posterior_average(fit1, fit2,
                                      weights = "marglik", missing = 0)[, 1:4]

  plot(eti(res_BT))
  plot(eti(res_brms))
}
}
}
\references{
\itemize{
  \item Clyde, M., Desimone, H., & Parmigiani, G. (1996). Prediction via orthogonalized model mixing. Journal of the American Statistical Association, 91(435), 1197-1208.
  \item Hinne, M., Gronau, Q. F., van den Bergh, D., and Wagenmakers, E. (2019, March 25). A conceptual introduction to Bayesian Model Averaging. \doi{10.31234/osf.io/wgb64}
  \item Rouder, J. N., Haaf, J. M., & Vandekerckhove, J. (2018). Bayesian inference for psychology, part IV: Parameter estimation and Bayes factors. Psychonomic bulletin & review, 25(1), 102-113.
  \item van den Bergh, D., Haaf, J. M., Ly, A., Rouder, J. N., & Wagenmakers, E. J. (2019). A cautionary note on estimating effect size.
}
}
\seealso{
\code{\link{bayesfactor_inclusion}} for Bayesian model averaging.
}

back to top

Software Heritage — Copyright (C) 2015–2025, The Software Heritage developers. License: GNU AGPLv3+.
The source code of Software Heritage itself is available on our development forge.
The source code files archived by Software Heritage are available under their own copyright and licenses.
Terms of use: Archive access, API— Content policy— Contact— JavaScript license information— Web API