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1 Introduction30

The setoid model of type theory pioneered by Hofmann [15] supports the following extensional31

features that are missing from intensional type theory: function extensionality, propositional32

extensionality (univalence for propositions [4]) and quotient inductive-inductive types [18].33

If the setoid model is defined in an intensional metatheory and all equations of the model34

(such as the β rule) hold definitionally, then it constitutes a model construction (also called35

syntactic translation): any model of intensional type theory can be turned into its “setoidified”36

variant which supports the extensional features, thus bootstrapping the extensional features37

from intensional type theory. Hofmann’s original model only justified some of the equations38

definitionally. Altenkirch showed that if the metatheory supports a sort TyP of definitionally39

proof irrelevant propositions in addition to the sort Ty of types, then there is a version of40

the setoid model where all equations are definitional [2]. After he presented this model41

construction at the Symposium on Logic in Computer Science in 1999 [2], Per Martin-Löf42
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8:2 Internal strict propositions using point-free equations

asked whether it is possible to remove the extra requirement of TyP. As far as we know, the43

question is still open.44

In this setoid model a closed type is a setoid: a type together with an equivalence relation;45

a term is a function between the types which respects the relations. If the equivalence relation46

is proof relevant (Ty-valued), then terms have to additionally include components about47

respecting the reflexivity, symmetry and transitivity proofs, then when proving equalities48

of terms (such as the β law), one has to show that the corresponding new components49

are equal, which forces the introduction of new components, and so on. This problem50

is usually referred to as coherence problem, see [15, Section 5.3] for a discussion in the51

context of the setoid model, or [19] for a recent exposition of the general phenomenon.52

Altenkirch’s solution [2] was to make the relation TyP-valued instead of Ty-valued: in this53

case, terms automatically respect reflexivity proofs as there is only one proof of reflexivity,54

up to definitional equality. We could avoid requiring TyP by using the internally definable55

universe of homotopy propositions hProp [23]. If the relation is hProp-valued, terms respect56

reflexivity proofs up to the internal identity type. However to show that the relation for Π57

types is in hProp, we need that hProp is closed under Π. To prove this, we need function58

extensionality, which defeats the purpose of the model bootstrapping function extensionality.59

In this paper we show that in intensional type theory there is an alternative notion of60

proposition that is closed under Π. A type A is an hProp if any two elements of A are equal.61

We can also express this equation in a point-free way: the two functions “first” and “second”62

both having type A Ñ A Ñ A are equal. We call this property isPfProp for point-free63

propositions.64

isHPropA ” pa a1 : Aq Ñ IdA a a1 isPfPropA ” IdpAÑAÑAq pλa a1.aq pλa a1.a1q65

In the presence of function extensionality, isHPropA and isPfPropA are equivalent. However,66

in intensional type theory without function extensionality, the latter is stronger. isPfProp67

classifies definitionally proof irrelevant types in the empty context: from canonicity it follows68

that if isPfPropA for a closed type A, then all elements of A are definitionally equal. For a69

type family A : D Ñ Type over a closed type we use a dependent variant of isPfProp:70

isPfPropdA ” Idppd:DqÑAdÑAdÑAdq pλd a a
1.aq pλd a a1.a1q71

In intensional type theory, unlike hProp, isPfPropd is closed under Π types. This essentially72

relies on the η rule for Π types. Using η for Σ and J, we can prove that isPfPropd is closed73

under these type formers too. isPfProp only includes K if it has a weak η rule saying that74

any two elements of K are definitionally equal. This is usually not the case in intensional75

type theory where K is defined as an inductive type.76

With the help of point-free propositions, we give a partial positive answer to Martin-Löf’s77

question: in intensional type theory without a sort of propositions, we define the setoid model78

with K, J, Π, Σ, types, a sort TyP closed under J, Π, Σ and a TyP-valued identity type79

with function extensionality. Our answer is partial because K is not in TyP, and the model80

does not support inductive types, or a universe of propositions. We also define an external81

version of this model as a model construction taking as input a model of intensional type82

theory, and outputting a model with extensionality principles. This latter construction only83

uses external point-free propositions which are the same as subobjects in category theory,84

but we still haven’t encountered it in the literature.85

Recently, there is a renewed interest in models of type theory with a sort TyP. Agda was86

extended with a universe of strict propositions [13], this was used to formalise fully featured87

variants of the setoid model [4, 3, 18], strict presheaf models were built using TyP [22], and88
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the metatheory of type theories with TyP was studied [1, 11]. One difference between TyP89

and pfProp is that (as every sort) the former is static: it only includes types which are built90

into it. The latter is dynamic: any type is included for which all elements are definitionally91

equal. Another difference is that proof irrelevance holds definitionally for assumed elements92

of TyP, while we only know proof irrelevance up to propositional equality for members of93

pfProp.94

More generally, in intensional type theory, point-free equations can be used to describe95

strict algebraic structures. One has to express the algebraic equations in a point-free way.96

For example, in a strict monoid with carrier M and binary operation – b –, associativity is97

expressed as IdMÑMÑMÑM
`

λx y z.px b yq b z
˘ `

λx y z.x b py b zq
˘

. Natural numbers with98

addition are not a strict monoid because addition is only weakly associative. An example of99

a strict monoid is the function space AÑ A for any type A with composition as the binary100

operation.101

1.1 Structure of the paper102

After describing related work, in Section 2 we explain our notation and the notion of model103

of type theory we use (category with families). In Section 3 we define point-free propositions104

and show that they are closed under J, Σ and Π. In Section 4, we show that any model105

of type theory can be equipped with a sort of strict propositions. This can be seen as the106

external version of Section 3. We compare the internal and external notions of propositions107

in Section 5. Then we describe how point-free propositions can be applied to construct the108

setoid model. As a warmup, we define the model construction externally (Section 6). Then109

we turn to our main application of internal point-free propositions and define the setoid110

model internally to a model of intensional type theory (Section 7). In Section 8 we give more111

examples of strict algebraic structures. We conclude in Section 9.112

Sections 3 and 7 were formalised in Agda [12], and can be understood without much113

intuition about categories with families.114

1.2 Related work115

Hofmann defined two versions of the setoid model in an intensional metatheory [15], one116

of them did not have dependent types, the other justified some computation rules (e.g. β117

rules for Σ types) only up to propositional equality, and not definitionally. Altenkirch [2]118

justified all the rules of type theory but relied on a definitionally proof-irrelevant universe119

of propositions. He sketched a normalisation proof for a type theory with such a universe.120

Coquand [9] defined a setoid model in intensional type theory which justifies a weak function121

space: there is no substitution rule for λ and no η rule. Palmgren [21] formalised a set-122

theoretic interpretation of extensional type theory in an intensional metatheory. He used123

setoids for encoding sets as well-founded trees quotiented by bisimulation, hence it can also124

be seen as a setoid model. Thus it is similar to our Construction 17 and it justifies more125

types including inductive types and a universe. It is not clear whether one can obtain a126

model construction analogous to Construction 15 from his interpretation.127

Strict propositions were introduced in Agda and Coq in a way that is compatible with128

univalence [13]. Issues with rewriting-style normalisation for a type theory with strict129

propositions, a strict identity type and a strong transport were found by Abel and Coquand130

[1]. Normalisation for type theory with strict propositions but without such an identity type131

was proved by Coquand [11].132

TYPES 2021



8:4 Internal strict propositions using point-free equations

The setoid model as a model construction was described in [4] together with an Agda133

formalisation using strict propositions in Agda. This was extended with an inductive-recursive134

universe of setoids in [3].135

In [4], a variant of the setoid model was described in which transport has a definitional136

computation rule. In the accompanying formalisation, a point-free equation was used to ensure137

this property: instead of pa : Aq Ñ coeA refl a “ a, the equation pλa.coeA refl aq “ pλa.aq was138

used. In his brilliant paper [16], Hugunin shows that function extensionality is not needed to139

define natural numbers (and inductive types) from W-types in intensional type theory. He140

constructs a predicate which selects the “canonical” elements in natural numbers defined by141

W-types. His construction has a similar “point-free” flavour and also essentially relies on η142

for function space.143

2 Type theory144

Our metatheory is extensional type theory and we use notations similar to Agda’s. We write145

Type for the Russell universe (we don’t write levels explicitly, but we work in a predicative146

setting), we write ” for definitional equality, we write px : Aq Ñ B for function space with147

λpx : Aq.t or λx.t for abstraction, juxtaposition for application, px : AqˆB for Σ types with a, b148

for pairing and π1 ab, π2 ab for projections. We use the lower case Simonyi naming convention,149

e.g. ab is a name for a variable in px : Aq ˆ B. We use implicit arguments and implicit150

quantifications which we sometimes specify explicitly in subscripts. We write J, tt for the151

unit type and its constructor. Function space, dependent products and unit have η laws. We152

write IdA a a1 or a “A a1 or simply a “ a1 for the identity type, it has constructor refl : IdA a a153

and eliminator J :
`

P : pa1 : Aq Ñ a “ a1 Ñ Type
˘

Ñ P a refl Ñ pe : a “ a1q Ñ P a1 e with154

definitional computation rules. We write transp : pP : A Ñ Typeq Ñ a “ a1 Ñ P a Ñ P a1,155

e ‚ e1 : a “ a2 for e : a “ a1 and e1 : a1 “ a2, ap f e : f a “ f a1 for e : a “ a1, all defined via J.156

The empty type is denoted K with eliminator elimK. We assume quotient inductive-inductive157

types (QIITs), that is, we have syntaxes for type theories (see paragraph after the next one).158

In some places (e.g. in sections 3 and 7), we work internally to a model of intensional159

type theory, and use the same notations as for our metatheory. In these cases we specify160

precisely what features our model has and we only use those features, for example we don’t161

use equality reflection. In such cases we use the phrase “external” to refer to the metatheory.162

The notion of model of type theory we use is category with families (CwF, [8]). Using this163

presentation, type theory is a generalised algebraic theory and the syntax of a type theory is164

the initial algebra which is a QIIT. In extensional type theory, it is enough to assume the165

existence of a single QIIT to obtain syntaxes for all generalised algebraic theories [17]. We166

assume the existence of this QIIT (called the theory of QIIT signatures in [17]).167

We give some intuition for the description of type theory as a CwF here. A gentler168

introduction is e.g. [5]. Figure 1 lists the components of a model of type theory with J, Σ, Π, K169

and Id types. A model of type theory consists of a category with families (CwF, left hand side170

of the figure), that is, a category of contexts and substitutions (Con, . . . , idr) with a terminal171

object (the empty context ˛, the empty substitution ε, ˛η), a presheaf of types (Ty, . . . , rids)172

and a locally representable dependent presheaf of terms over types (Tm, . . . ,Bη). Local173

representability is also called comprehension, and consists of the context extension operation174

– B – together with the natural isomorphism Sub ∆ pΓ BAq – pγ : Sub ∆ Γq ˆ Tm ∆ pArγsq175

witnessed by – , – , . . . ,Bη. Note that many operations have implicit arguments, for example176

– ˝ – takes Γ, ∆, Θ implicitly. Also, some equations only typecheck because of previous177

equations, for example, rids for terms depends on rids for types: the left hand side is in178
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Con : Set J : Ty Γ
Sub : Con Ñ Con Ñ Set Jrs : Jrγs ” J
– ˝ – : Sub ∆ Γ Ñ Sub Θ ∆ Ñ Sub Θ Γ tt : Tm ΓJ
ass : pγ ˝ δq ˝ θ ” γ ˝ pδ ˝ θq Jη : pt : Tm ΓJq Ñ t ” tt
id : Sub Γ Γ Σ : pA : Ty Γq Ñ Ty pΓ BAq Ñ Ty Γ
idl : id ˝ γ ” γ Σrs : pΣABqrγs ” Σ pArγsq pBrγ ˝ p, qsq
idr : γ ˝ id ” γ – , – : pa : Tm ΓAq Ñ Tm Γ pBrid, asq Ñ
˛ : Con Tm Γ pΣABq

ε : Sub Γ ˛ π1 : Tm Γ pΣABq Ñ Tm ΓA
˛η : pσ : Sub Γ ˛q Ñ σ ” ε π2 : pab : Tm Γ pΣABqq Ñ

Ty : Con Ñ Set Tm Γ pBrid, π1 absq

–r–s : Ty Γ Ñ Sub ∆ Γ Ñ Ty ∆ Σβ1 : π1 pa, bq ” a

r˝s : Arγ ˝ δs ” Arγsrδs Σβ1 : π2 pa, bq ” b

rids : Arids ” A Ση : pπ1 ab, π2 abq ” ab

Tm : pΓ : Conq Ñ Ty Γ Ñ Set ,rs : pa, bqrγs ” parγs, brγsq
–r–s : Tm ΓAÑ pγ : Sub ∆ Γq Ñ Π : pA : Ty Γq Ñ Ty pΓ BAq Ñ Ty Γ

Tm ∆ pArγsq Πrs : pΠABqrγs ” Π pArγsq pBrγ ˝ p, qsq
r˝s : arγ ˝ δs ” arγsrδs lam : Tm pΓ BAqB Ñ Tm Γ pΠABq

rids : arids ” a app : Tm Γ pΠABq Ñ Tm pΓ BAqB

– B – : pΓ : Conq Ñ Ty Γ Ñ Con Πβ : app plam tq ” t

– , – : pγ : Sub ∆ Γq Ñ Tm ∆ pArγsq Ñ Πη : lam papp tq ” t

Sub ∆ pΓ BAq lamrs : plam tqrγs ” lam ptrγ ˝ p, qsq
pA : Sub pΓ BAqΓ K : Ty Γ
qA : Tm pΓ BAq pArpsq Krs : Krγs ” K
Bβ1 : p ˝ pγ, aq ” γ elimK : Tm ΓK Ñ Tm ΓA
Bβ2 : qrγ, as ” a elimKrs : pelimK tqrγs ” elimK ptrγsq
Bη : pp ˝ γa, qrγasq ” γa Id– : pA : Ty Γq Ñ Tm ΓAÑ Tm ΓAÑ

Ty Γ
Idrs : pIdA a a1qrγs ” IdArγs parγsq pa1rγsq
refl : Tm Γ pIdA a aq
reflrs : reflrγs ” refl
J : pP : Ty pΓ BAB IdArps parpsq qqq Ñ

Tm Γ pP rid, a, reflsq Ñ
pe : Tm Γ pIdA a a1qq Ñ
Tm Γ pP rid, a1, esq

Jβ : JP w refl ” w

Jrs : pJP w eqrγs ”
J pP rγ ˝ p ˝ p, qrps, qsq pwrγsq perγsq

Figure 1 A model of type theory with J, Σ, Π, K, Id. The left column is the definition of CwF,
the right column contains the rules for the type formers, one after the other, in the same order.

TYPES 2021



8:6 Internal strict propositions using point-free equations

, ˝ : pγ, aq ˝ δ ” pγ ˝ δ, arδsq
π1rs : pπ1 abqrγs ” π1 pabrγsq

π2rs : pπ2 abqrγs ” π2 pabrγsq

– ˆ – : Ty Γ Ñ Ty Γ Ñ Ty Γ
AˆB :” ΣA pBrpsq
apprs : papp tqrγ ˝ p, qs ” app ptrγsq
– $ – : Tm Γ pΠABq Ñ pa : Tm ΓAq Ñ Tm Γ pBrid, asq
t $ a :” papp tqrid, as
$β : lam t $ a ” trid, as
$rs : pt $ aqrγs ” trγs $ arγs
– ñ – : Ty Γ Ñ Ty Γ Ñ Ty Γ
Añ B :” ΠA pBrpsq

Figure 2 Provable equations and definable operations in a model of type theory with Σ, Π.

TyP : Con Ñ Set
–r–s : TyP Γ Ñ Sub ∆ Γ Ñ TyP ∆
r˝s : Arγ ˝ δs ” Arγsrδs

rids : Arids ” A

Ò : TyP Γ Ñ Ty Γ
Òrs : pÒAqrγs ” ÒpArγsq
irr : pu v : Tm Γ pÒAqq Ñ u ” v

JP : TyP Γ
JPrs : JPrγs ” JP
ttP : Tm ΓJP
ΣP : pA : TyP Γq Ñ TyP pΓ B ÒAq Ñ TyP Γ
ΣPrs : pΣPABqrγs ” ΣP pArγsq pBrγ ˝ p, qsq
– ,P– : pa : Tm Γ pÒAqq Ñ Tm Γ pÒBrid, asq Ñ Tm Γ pÒΣPABq
π1P : Tm Γ pÒΣPABq Ñ Tm ΓA
π2P : pab : Tm Γ pÒΣPABqq Ñ Tm Γ pÒBrid, π1 absq

ΠP : pA : Ty Γq Ñ TyP pΓ BAq Ñ TyP Γ
ΠPrs : pΠPABqrγs ” ΠP pArγsq pBrγ ˝ p, qsq
lamP : Tm pΓ BAq pÒBq Ñ Tm Γ pÒΠPABq
appP : Tm Γ pÒΠPABq Ñ Tm pΓ BAq pÒBq

Figure 3 A model of type theory has a sort of proof-irrelevant propositions closed under J, Σ, Π.
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Tm Γ pAridsq, the right hand side is in Tm ΓA. We don’t write the transports because we179

work in extensional type theory.180

Variables are represented using typed De Bruijn indices. The zero De Bruijn index is181

q : Tm pΓ B Aq pArpsq, the one index is given by qrps : Tm pΓ B A B Bq pArpsrpsq, two is182

qrpsrps : Tm pΓBABB BCq pArpsrpsrpsq, and so on. Some provable equations and definable183

operations are listed in Figure 2.184

The right hand side of Figure 1 lists rules for J, Σ, Π, K and Id types, in this order. The185

first three type formers have η laws, the latter two don’t (they are instances of inductive186

types). Every operation comes with substitution laws (e.g. lamrs), some of them are not187

listed as they are provable (see Figure 2). Non-dependent special cases of Π and Σ are also188

listed there.189

Figure 3 lists the operations and equations for a model having a sort of definitionally190

proof-irrelevant propositions TyP which is closed under J, Σ and Π. Terms of propositional191

types are expressed with the help of lifting Ò which converts a TyP into a Ty. Because of irr,192

there is no need to state equations for terms of lifted types, all equations hold.193

Two important properties of models that we sometimes assume are canonicity [10] and194

normalisation [6, 10]. Canonicity for K says that there is no Tm ˛ K. Canonicity for Id says195

that for any t : Tm ˛ pIdA a a1q, we have a ” a1 and t ” refl. Normalisation says that there196

is a function from terms to normal forms norm : Tm ΓA Ñ Nf ΓA such that all terms are197

equal to their normalised versions (x–y is the inclusion from Nf to Tm): for all a : Tm ΓA,198

xnorm ay “ a. Normal forms for the theory of Figure 1 are defined mutually with variables199

and neutral terms by the following three inductive types.200

x ::“ q |xrps variables201

n ::“ x |π1 n |π2 n |n $ v | elimK n | JAv n neutral terms202

v :“ n˚ | tt | pv, vq | lam v | refl normal forms203
204

These should be understood as typed rules and there is a restriction (n˚) that only neutral205

terms at base types are included in normal forms. Base types are K and Id in our case.206

Sometimes we just talk about intensional type theory when we don’t want to specify207

precisely what type formers we have in a model.208

3 Point-free propositions internally209

In this section we show that (the dependent variant of) point-free propositions is closed210

under J, Σ and Π. We work internally to a model of type theory with a universe Type closed211

under type formers Id, J, Σ, Π. This section was formalised in Agda [12].212

The η rule for J says that for any two t, t1 : J we have t ” t1, so we also have that213

pλpt t1 : Jq.tq ” pλt t1.t1q, hence refl :
`

pλt t1.tq “ pλt t1.t1q
˘

” isPfPropJ.214

As a warmup for Σ, we prove closure under non-dependent products.215

§ Proposition 1. If isPfPropA and isPfPropB, then isPfProp pAˆBq.216

Proof. We assumed pA : isPfPropA ”
`

pλpa a1 : Aq.aq “ pλa a1.a1q
˘

and pB : isPfPropB ”217
`

pλpb b1 : Bq.bq “ pλb b1.b1q
˘

and we want to obtain that AˆB is a point-free proposition.218

pAˆB : isPfProp pAˆBq ”
`

pλab ab1.abq “ pλab ab1.ab1q
˘

”219
`

pλab ab1.pπ1 ab, π2 abqq “ pλab ab
1.pπ1 ab

1, π2 ab
1
qq
˘

220
221

TYPES 2021



8:8 Internal strict propositions using point-free equations

When rewriting the type of pAˆB, we applied the η rule for products which says that222

ab ” pπ1 ab, π2 abq for any ab : AˆB. Then we prove the equality in two steps: first we use223

pA to show that π1 ab “ π1 ab
1 while we keep the π2 ab component constant224

p1
AˆB :

`

λab ab1.pπ1 ab, π2 abq
˘

“
`

λab ab1.pπ1 ab
1, π2 abq

˘

225

p1
AˆB :” ap

`

λz.λab ab1.pz pπ1 abq pπ1 ab
1
q, π2 abq

˘

pA,226
227

then we use pB to show that π2 ab “ π2 ab
1 while we keep the π1 ab

1 components constant. In228

the middle we have the function returning the mixed pair pπ1 ab
1, π2 abq.229

p2
AˆB :

`

λab ab1.pπ1 ab
1, π2 abq

˘

“
`

λab ab1.pπ1 ab
1, π2 ab

1
q
˘

230

p2
AˆB :” ap

`

λz.λab ab1.pπ1 ab
1, z pπ2 abq pπ2 ab

1
qq
˘

pB231
232

We obtain the desired equality via transitivity:233

pAˆB :” p1
AˆB

‚ p2
AˆB đ234

235

To show closure of point-free propositions under Σ types, we have A : Type, B : AÑ Type,236

isPfPropA, but assuming pa : Aq Ñ isPfProp pB aq is not enough. We express that B is a237

family of propositions using a dependent version of isPfProp:238

isPfPropd : pAÑ Typeq Ñ Type239

isPfPropdB :”
`

λpa : Aqpb b1 : B aq.b
˘

“ pλa b b1.b1q240
241

The non-dependent version is a special case when there is an element of the indexing type242

a0 : A, because given B : Type and pB : isPfPropd pλpa : Aq.Bq, we have ap pλz.z a0q pB :243

isPfPropB.244

We show the dependent version of closure under Σ types.245

§ Proposition 2. Given A : D Ñ Type and B : ΣDA Ñ Type, if isPfPropdA and246

isPfPropdB, then isPfPropd pλd.Σ pAdq pλa.B pd, aqqq.247

Proof. We have pA : isPfPropdA ” pλd a a1.aq “ pλd a a1.a1q and pB : isPfPropdB ”248

pλda b b1.bq “ pλda b b1.b1q, our goal is to obtain249

pΣAB : pλd ab ab1.abq “ pλd ab ab1.ab1q ” pλd ab ab1.pπ1 ab, π2 abqq “ pλd ab ab
1.pπ1 ab

1, π2 ab
1
qq.250

We want to prove this in two steps as for non-dependent products, but because B depends251

on A, the middle pair pπ1 ab
1, π2 abq is not well-typed. We replace the second component252

π2 ab : B pd, π1 abq with253

transpλa.B pd,aq
´

ap
`

λz.z d pπ1 abq pπ1 ab
1
q
˘

pA

¯

pπ2 abq : B pd, π1 ab
1
q,254

and we will use a more general version of this second component defined as255

f ab ab1 e :“ transpλa.B pd,aq
´

ap
`

λz.z d pπ1 abq pπ1 ab
1
q
˘

e
¯

pπ2 abq : B pd, h d pπ1 abq pπ1 ab
1
qq256

for any d, ab, ab1, h and e : pλd a a1.aq “ h. Now the first step has type257

p1
ΣAB : pλd ab ab1.abq “

`

λd ab ab1.pπ1 ab
1, f ab ab1 pAq

˘

258
259

and we prove it by induction on pA using J:260

p1
ΣAB :” J

´

λh e.pλd ab ab1.abq “
`

λd ab ab1.ph d pπ1 abq pπ1 ab
1
q, f ab ab1 eq

˘

¯

refl pA261
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In the next step we simply use ap on pB and we conclude by transitivity:262

p2
ΣAB :

`

λd ab ab1.pπ1 ab
1, f ab ab1 pAq

˘

“ pλd ab ab1.ab1q263

p2
ΣAB :” ap

´

λz.λd ab ab1.
`

π1 ab
1, z pd, π1 ab

1
q pf ab ab1 pAq pπ2 ab

1
q
˘

¯

pB264

pΣAB :” p1
ΣAB ‚ p2

ΣAB đ265
266

§ Corollary 3. For A : Type and B : A Ñ Type, if isPfPropA and isPfPropdB, then267

isPfProp pΣABq.268

Finally, we show closure of isPfPropd under dependent function space.269

§ Proposition 4. Given A : D Ñ Type, B : ΣDAÑ Type, if isPfPropdB, then270

isPfPropd pλd.pa : Adq Ñ B pd, aqq.271

Proof. Using pB : pλda b b1.bq “ pλda b b1.b1q, we define272

pΠAB : pλd f f 1.fq “ pλd f f 1.f 1q ” pλd f f 1 a.f aq “ pλd f f 1 a.f 1 aq273

pΠAB :” ap pλz d f f 1 a.z pd, aq pf aq pf 1 aqq pB . đ274
275

§ Corollary 5. For A : Type and B : AÑ Type, if isPfPropdB, then isPfProp ppa : Aq Ñ B aq.276

4 Point-free propositions externally277

In this section we show that any model of type theory with J, Σ, Π types has a sort TyP278

closed under the same type formers. This can be seen as an externalisation of the previous279

section.280

Recall that a model of type theory (a CwF, see Section 2) has a sort of strict propositions281

if there is a presheaf TyP together with a “lifting” natural transformation Ò into Ty, and282

terms of a lifted type are equal.283

First we define a predicate on types expressing externally that the type is a point-free284

proposition.285

§ Definition 6. For a type A : Ty Γ in any CwF, let isExtPfPropA :” pqArpArpss ” qArpsq.286

That is, in the context Γ BABArps, the terms qrps and q (1 and 0 De Bruijn indices, both287

having type Arpsrps) are definitionally equal. We call this the external variant of pfProp288

because it is clear that it is equivalent to saying lam plam pqrpsqq ” lam plam qq which is the289

external statement of λx y.x “ λx y.y. In the next section, we will relate the external and290

internal variants formally.291

Elements of a type which isExtPfProp are equal in any context.292

§ Proposition 7. For a type A, isExtPfPropA is equivalent to293

u ” v for all γ : Sub ∆ Γ and u, v : Tm ∆ pArγsq.294

Proof. Left to right: we have qrpsrγ, u, vs ” qrγ, u, vs, hence u ” v. Right to left: we choose295

u :” qrps, v :” q. đ296

In category theory, external point-free propositions over Γ are called subobjects of Γ.297

§ Proposition 8. For an A : Ty Γ, isExtPfPropA is equivalent to the morphism pA : Sub pΓ B298

AqΓ being a monomorphism.299
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Proof. Left to right: given pA ˝ pγ, aq ” pA ˝ pγ1, a1q, we need to show pγ, aq ” pγ1, a1q. Using300

the assumption we have γ ” pA ˝ pγ, aq ” pA ˝ pγ1, a1q ” γ1, hence a and a1 are both in301

Tm ∆ pArγsq. We get a ” a1 from Proposition 7.302

Right to left: given two terms a, a1 : Tm Γ pArγsq, we have pA ˝ pγ, aq ” γ ” pA ˝ pγ, a1q,303

hence by assumption pγ, aq ” pγ, a1q and applying qr–s to both sides we obtain a ” a1. đ304

§ Construction 9. Every CwF with J, Σ, Π can be equipped with a sort of strict propositions305

closed under the same type formers.306

Construction. We have to define all components in Figure 3. We define307

TyP Γ :” pA : Ty Γq ˆ isExtPfPropA.308

Substitution is defined by ordinary type substitution of the first component and the equation309

for substituted types holds by the following argument.310

qArγsrpArγsrpss311

” pr˝s,Bβ1,Bβ2q312

qArpArpssrγ ˝ p ˝ p, qArγsrpArγsrpss, qArγsrpss313

” (assumption)314

qArpsrγ ˝ p ˝ p, qArγsrpArγsrpss, qArγsrpss315

” pBβ2q316

qArγsrpsq317
318

The Ò operation is defined by ÒpA, pAq :” A. Irrelevance holds by Proposition 7. JP is319

defined as J and isExtPfPropJ holds by Jη. We define ΣP pA, pAq pB, pBq by pΣAB, pΣABq320

where pΣAB is proven using Proposition 7 for u, v : Tm ∆ pΣABrγsq by321

u
Ση
” pπ1 u, π2 uq

pA,pB
” pπ1 v, π2 vq

Ση
” v.322

We define ΠPA pB, pBq by pΠAB, pΠABq where pΠAB is proven using Proposition 7 for323

u, v : Tm ∆ pΠABrγsq by324

u
Πη
” lam pappuq pB

” lam papp vq Πη
” v. đ325

5 Relationship of different notions of being a proposition326

For a type family A : D Ñ Type, being a family of homotopy propositions and a family of327

point-free propositions were defined internally as follows.328

isHPropdA ” pd : Dqpa a1 : Adq Ñ IdpAdq a a1329

isPfPropdA ” Idppd:DqÑAdÑAdÑAdq pλd a a
1.aq pλd a a1.a1q330

331

Externally, these can be seen as the following two elements of Ty ˛ for A : Ty p˛BDq. We332

also repeat the definition of isExtPfProp for comparison which is a metatheoretic equality.333

isHPropdA ” ΠD
´

ΠA
`

Π pArpsq pIdArpsrps pqrpsq qq
˘

¯

334

isPfPropdA ” IdΠD pAñAñAq

`

lam plam plam pqrpsqqq
˘ `

lam plam plam qqq
˘

335

isExtPfPropA ” pqrps ” qq (both sides in Tm p˛BD BABArpsq pArpsrpsq)336
337

We first compare internal point-free propositions and external ones. They coincide for a type338

where we collect all dependencies into a single closed type D.339
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§ Proposition 10. In a model of type theory with Π, Id and canonicity, given an A : Ty p˛BDq,340

there is a Tm ˛ pisPfPropdAq if and only if isExtPfPropA.341

Proof. Right to left: if qrps ” q in Tm p˛BDqA, then lam plam plam pqrpsqqq ” lam plam plam qqq,342

hence refl : Tm ˛ pisPfPropdAq.343

Left to right: we have t : Tm ˛

´

IdΠD pAñAñAq

`

lam plam plam pqrpsqqq
˘ `

lam plam plam qqq
˘

¯

.344

Canonicity for Id implies that lam plam plam pqrpsqqq ” lam plam plam qqq, hence345

app papp papp plam plam plam pqrpsqqqqqq ” app papp papp plam plam plam qqqqqq.346

Now using Πβ three times on both sides we obtain qrps ” q where both sides are in347

Tm p˛BD BABArpsq pArpsrpsq, and this is isExtPfPropA. đ348

§ Corollary 11. In a model of type theory with Π, Id and canonicity, given a closed type A,349

Tm ˛ pisPfPropAq if and only if isExtPfPropA.350

In an open context, external point-free propositions are stronger than internal ones.351

§ Proposition 12. In a model of type theory with Π, Id, a type U and a family over it El (a352

possibly empty universe) and normalisation, we have A : Ty Γ such that Tm Γ pisPfPropAq,353

but not isExtPfPropA.354

Proof. Pick Γ :” ˛ B U B IdEl qñEl qñEl q plam plam pqrpsqqq plam plam qqq and A :” El pqrpsq.355

Now qrps and q both in Tm pΓ BABArpsq pArp ˝ psq have different normal forms. đ356

Next, we describe the relationship of homotopy and point-free propositions. Here we use the357

non-dependent variants.358

§ Proposition 13. (i) In a model of type theory with Π and Id, isPfPropA implies isHPropA.359

(ii) In a model of type theory with Π, Id, an inductively defined K and normalisation,360

(a) we have isHPropK, but not isPfPropK.361

(b) we don’t have that for any type A, isPfProp pisPfPropAq.362

(iii) In a model of type theory with Π, Id and function extensionality, isHPropA implies363

isPfPropA.364

Proof. (i) We work internally. Given pA : isPfPropA ” pλpa a1 : Aq.aq “ pλa a1.a1q, we365

define λa a1.ap pλz.z a a1q pA : isHPropA.366

(ii) (a) Internally, we have λb.elimK b : isHPropK. Let’s assume Tm ˛ pisPfPropKq. From367

Corollary 11 and Proposition 7, any two elements of K in any context are equal.368

But from normalisation we have qrps ı q : Tm p˛BKBKqK as they have different369

normal forms.370

(b) Assuming isPfProp pisPfPropKq, we obtain371

qrps ” q : Tm p˛B isPfPropKB isPfPropKq pisPfPropKq372

the same way as in (a), but they have different normal forms.373
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(iii) We have to show that isHPropA implies isPfPropA. We work internally by the following374

double application of function extensionality.375

isHPropA376

”377
`

pa a1 : Aq Ñ a “ a1
˘

378

”379
`

pa : Aqpa1 : Aq Ñ pλa1.aq a1 “ pλa1.a1q a1
˘

380

Ñ (function extensionality)381
`

pa : Aq Ñ pλa1.aq “ pλa1.a1q
˘

382

”383
`

pa : Aq Ñ pλa a1.aq a “ pλa a1.a1q a
˘

384

Ñ (function extensionality)385

pλa a1.a1q “ pλa a1.a1q386

”387

isPfPropA đ388
389

From the previous section, we know that TyP can be defined using isExtPfProp. If we start390

with a model that already has TyP, it is natural to ask about the relationship of TyP and391

the other notions of being a proposition.392

§ Proposition 14. (i) In a model of type theory with Π, Id and TyP, if A : TyP Γ, then393

Tm Γ pisHProp pÒAqq, Tm Γ pisPfProp pÒAqq and isExtPfProp pÒAq.394

(ii) In a model of type theory with Π, Σ and Id, if for every type A, isHPropA implies395

isExtPfPropA, then the model has equality reflection.396

Proof. (i) Because any two terms of type ÒA are definitionally equal by irr, internally397

λa a1.refl : isHPropA and refl : isPfPropA.398

(ii) The proof is from [13]. Singleton types are in hProp, that is, internally isHProp ppa1 :399

Aq ˆ IdA a a1q holds for any a, but if isExtPfProp ppa1 : Aq ˆ IdA a a1q, then for any400

e : IdA a a1, we have pa, reflq ” pa1, eq, hence a ” π1 pa, reflq ” π1 pa
1, eq ” a1.401

đ402

6 The setoid model externally403

In this section, from a model of type theory with J, Σ and Π, we build another model of type404

theory with the same type formers and a strict identity type, a strong transport rule and405

function extensionality. Strictness of the identity type means that any two elements of the406

identity type are definitionally equal (it is an external point-free proposition, isExtPfProp).407

Strength of transport means that we can transport an element of any family of types, not408

only families of strict propositions. In contrast, Agda and the method described in [13] only409

support a strict identity type with a weak transport: the identity type is Prop-valued and we410

can only transport along Prop-valued families.411

In Section 7, we describe an internal version of this model construction where we define a412

model internally to an intensional metatheory. Section 7 relates to this section as the section413

on internal point-free propositions (Section 3) relates to the section on external point-free414

propositions (Section 4). The model construction in this section follows those in [4, 3] with415

some small improvements, but is defined in a more restricted setting: we do not assume that416

the input model has a universe of strict propositions.417

Note that even if our metatheory is extensional type theory, we do not rely on any418

extensionality features in the input model. We only use an extensional metatheory for419

convenience. Following Hofmann’s conservativity theorem [14], our arguments can be420

replayed in an intensional metatheory with function extensionality and uniqueness of identity421

proofs.422
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§ Construction 15. From an input model of type theory with J, Σ, Π, a sort TyP closed423

under JP, ΣP and TyP (as in Figure 3), we construct a model of type theory with the424

same type formers and a TyP-valued identity type with a strong transport rule and function425

extensionality.426

Construction. A context in the output model is a context in the input model together with427

an hProp-valued equivalence relation on substitutions into that context. Note that as our428

metatheory is extensional type theory, hProp and pfProp coincide.429

Con :” p|Γ| : Conq430

ˆpΓ„ : Sub Ξ |Γ| Ñ Sub Ξ |Γ| Ñ hPropq431

ˆp–r–sΓ : Γ„ γ0 γ1 Ñ pξ : Sub Ξ1 Ξq Ñ Γ„ pγ0 ˝ ξq pγ1 ˝ ξqq432

ˆpRΓ : pγ : Sub Ξ |Γ|q Ñ Γ„ γ γq433

ˆpSΓ : Γ„ γ0 γ1 Ñ Γ„ γ1 γ0q434

ˆpTΓ : Γ„ γ0 γ1 Ñ Γ„ γ1 γ2 Ñ Γ„ γ0 γ2q435
436

In [4], the relation for contexts was TyP-valued, not metatheoretic proposition (hProp)-valued.437

We chose to use hProp for reasons of modularity: now the category part of the output model438

(Con, Sub) only refers to the category part of the input model. Note that the relation for439

types is TyP-valued.440

Substitutions are substitutions in the input model which respect the relation.441

Sub ∆ Γ :” p|γ| : Sub |∆| |Γ|q ˆ pγ„ : ∆„ δ0 δ1 Ñ Γ„ p|γ| ˝ δ0q p|γ| ˝ δ1qq442

Composition and identities are composition and identities from the input model where the „443

components are defined by function composition and the identity function. In fact, up to Π444

types, all the |– | components in the output model are the corresponding components of the445

input model.446

The empty context is defined as |˛| :” ˛ and ˛„ σ0 σ1 :” J which is trivially an equivalence447

relation.448

Types are displayed setoids with TyP-valued relations together with coercion and coherence449

operations.450

Ty Γ :”451

p|A| : Ty |Γ|q452

ˆpA„ : Γ„ γ0 γ1 Ñ Tm Ξ p|A|rγ0sq Ñ Tm Ξ p|A|rγ1sq Ñ TyP Ξq453

ˆpA„rs : pA„ γ01 a0 a1qrξs ” A„ pγ01rξsΓq pa0rξsq pa1rξsqq454

ˆpRA : pa : Tm Ξ p|A|rγsqq Ñ Tm Ξ pÒA„ pRΓ γq a aqq455

ˆpSA : Tm Ξ pÒA„ γ01 a0 a1q Ñ Tm Ξ pÒA„ pSΓ γ01q a1 a0qq456

ˆpTA : Tm Ξ pÒA„ γ01 a0 a1q Ñ Tm Ξ pÒA„ γ12 a1 a2q Ñ Tm Ξ pÒA„ pTΓ γ01 γ12q a0 a2qq457

ˆpcoeA : Tm Ξ pÒΓ„ γ0 γ1q Ñ Tm Ξ p|A|rγ0sq Ñ Tm Ξ p|A|rγ1sqq458

ˆpcoeArs : coeA γ01 a0rξs ” coeA pγ01rξsΓq pa0rξsqq459

ˆpcohA : pγ01 : Tm Ξ pÒΓ„ γ0 γ1qqpa0 : Tm Ξ p|A|rγ0sqq Ñ Tm Ξ pÒA„ γ01 a0 pcoeA γ01 a0qqq460461

Type substitution is given by type substitution in the input model and function composition462

for the other components.463

Terms are terms which respect the (displayed) equivalence relations.464

Tm ΓA :” p|t| : Tm |Γ| |A|q ˆ pt„ : pγ01 : Γ„ γ0 γ1q Ñ Tm Ξ pÒA„ γ01 p|t|rγ0sq p|t|rγ1sqqq465
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Term substitution is given by term substitution in the input model and function composition466

for the „ component.467

Context extension is context extension |Γ B A| :” |Γ| B |A|, the relation is given by468

metatheoretic Σ types: pΓ BAq„ pγ0, a0q pγ1, a1q :” pγ01 : Γ„ γ0 γ1q ˆ Tm Ξ pÒA„ γ01 a0 a1q.469

This is an equivalence relation because Γ„ is an equivalence relation and A„ is a displayed470

equivalence relation. The „ components of – , –, p and q are given by pairing and projections471

for metatheoretic Σ types. The equations Bβ1, Bβ2, Bη follow from β, η for metatheoretic472

Σ types. The unit type J is given by |J| :” J, J„ γ01 t0 t1 :” JP.473

Σ types use ΣP for the relation: we define |ΣAB| :” Σ |A| |B| and474

pΣABq„ γ01 pa0, b0q pa1, b1q :” ΣP pA„ γ01 a0 a1q pB
„ pγ01rps, qq pb0rpsq pb1rpsqq.475

All the other components are pointwise, for example RΣAB pa, bq :” pRA a ,P RB bq and476

coeΣAB γ01 pa0, b0q :” pcoeA γ01 a0, coeB pγ01, cohA γ01 a0q b0q.477

Pairing, first and second projection and the computation rules are straightforward. Note that478

to prove e.g. π1 pa, bq ” a, it is enough to compare the first components, i.e. |π1 pa, bq| ” |a|479

as the second components are equal by irr.480

For Π types, the |– | component includes „ components of the constituent types:481

|ΠAB| :”482

Σ pΠ |A| |B|q483
ˆ

ΠP p|A|rpsq
´

ΠP p|A|rp2sq
`

ΠP pÒA„ pRΓ p3q pqrpsq qq484

pB„ pRΓ p4, qq pqrp3s $ qrp2sq pqrp3s $ qrpsqq
˘

¯

˙

485

486

Functions are given by functions which respect the relation: for any two elements of |A| that487

are related by A„, the outputs of the function are related by B„. We wrote p2 for p ˝ p.488

With variable names and without weakenings, the same definition is written489

Σpf : Πpa : |A|q.|B|q.ΠPpa0 a1 : |A|, a01 : ÒA„ pRΓ idq a0 a1q.B
„ pRΓ id, a01q pf $a0q pf $a1qq.490

The relation for Π types says that two functions are related if they map related inputs to491

related outputs:492

pΠABq„ γ01 t0 t1 :”493

ΠP p|A|rγ0sq
´

ΠP p|A|rγ1 ˝ psq
`

ΠP pÒA„ pγ01rp2sΓq pqrpsq qq494

pB„ pγ01rp3sΓ, qq pt0rp3s $ pqrp2sqq pt1rp3s $ pqrpsqqq
˘

¯

495496

Reflexivity for Π types is second projection: RΠAB t :” π2 t. The other components are497

defined as in [4]. The definition of lam and app are straightforward. Just as for Π, the498

definition of |lam t| involves both |t| and t„. When comparing two elements of |ΠAB|499

for equality, only the first components of the Σ types have to be compared, the second500

components are equal by irr.501

The sort TyP is defined by TyPs in the input model together with coercion.502

TyP Γ :” p|A| : TyP |Γ|q ˆ pcoeA : Γ„ γ0 γ1 Ñ Tm Ξ pÒ|A|rγ0sq Ñ Tm Ξ pÒ|A|rγ1sqq503

Compared to Ty which had nine components, TyP has only two. All the other components504

that Ty had are irrelevant for propositional types. Lifting is given by lifting in the input505

model, the relation is trivial and coercion comes from the coercion component in TyP:506

|ÒA| :” Ò|A| pÒAq„ γ01 a0 a1 :” JP coeÒA γ01 a0 :” coeA γ01 a0507
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TyP is closed under JP, ΣP and ΠP.508

Thus we constructed a model of type theory with J, Π, Σ and a sort TyP closed under509

the same type formers.510

This model has an identity type IdA a a1 : TyP Γ for a, a1 : Tm ΓA.511

|IdA a a1| :” A„ pRΓ idq a a1 pIdA a a1q„ γ01 e0 e1 :” JP512

coeIdA a a1 γ01 e
loomoon

:A„ pRΓ γ0q parγ0sq pa1rγ0sq

:” TA pa„ pSΓ γ01qq
loooooomoooooon

:A„ pSΓ γ01q parγ1sq parγ0sq

`

TA e pa1
„
γ01q

looomooon

:A„ γ01 pa1rγ0sq pa1rγ1sq

˘

loooooooooooooooooooooooooooooooooooomoooooooooooooooooooooooooooooooooooon

:A„ pRΓ γ1q parγ1sq pa1rγ1sq

513

514

It has a constructor refl and an eliminator transp (J is a consequence of transport as equality515

is proof-irrelevant).516

refl : Tm Γ pÒIdA a aq517

|refl| :” RA a518

refl„ γ01 :” ttP519

transp : pP : Ty pΓ BAqq Ñ Tm Γ pÒIdA a a1q Ñ Tm Γ pP rid, asq Ñ Tm Γ pP rid, a1sq520

|transpP eu| :” coeP pRΓ id, |e|q |u|521
522

The computation rule of transp only holds up to Id, but as described in [4], the model523

can be refined to support a definitional computation rule. Note that transport works with524

arbitrary Ty-motive, the motive does not have to be TyP (as opposed to the inductively525

defined Prop-valued identity type in Agda). Function extensionality holds by definition of526

the identity type. đ527

§ Construction 16. From an input model of type theory with J, Σ, Π, we construct a model528

of type theory with J, Σ, Π, a sort of propositions TyP closed under J, Σ, Π and a TyP-valued529

identity type with a strong transport rule and function extensionality.530

Construction. We take the input model, equip it with TyP using Construction 9, then invoke531

Construction 15. đ532

The above construction can be extended with the empty type: if the input model has533

K : Ty, the output model also supports K : Ty with its elimination rule, but we do not have534

K : TyP (unless isExtPfPropK in the input model). Similarly, to justify booleans in the output535

model, we need that the input model has booleans and a definitionally proof-irrelevant family536

over booleans that we can use to define identity for booleans:537

IdBool : Ty pΓ B Bool B Boolq538

Idtrue : Tm Γ pIdBoolrid, true, truesq539

Idfalse : Tm Γ pIdBoolrid, false, falsesq540

Idirr : pe e1 : Tm pΓ B Bool B Boolq IdBoolq Ñ e ” e1541
542

But then we might as well require TyP in the input model with closure under inductive types.543

7 The setoid model internally544

In the previous section we showed how a setoid model can be constructed without requiring545

a sort TyP in the input model. Can we redo the same internally to intensional type theory546
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using point-free propositions? That is, can we define a setoid model in Agda (which can547

be viewed as the initial model of intensional type theory) without using strict propositions548

(Prop, TyP)?549

Compared to Construction 15 of the previous section, the role of the input model is taken550

by our metatheory (Agda), the role of the output model is the model we construct. The551

equations of our model are given by the identity type of the metatheory. If all the equations552

can be proven by refl, it means that the model is strict. In such a case an external model553

construction can be obtained from the internal model (see [4, Section 3] for an exposition of554

model constructions vs. internal models through the example of the graph model). Model555

constructions are also called syntactic translations, see [7] for such a presentation.556

The notion of model we construct is described in Figures 1, 2, 3 in extensional type557

theory. As some operations and equations typecheck only because of previous equations (e.g.558

lamrs depends on Πrs), the complete intensional description of the notion of model has many559

transports compared to this (see [5] for an exposition using explicit transports). However if560

an equation is proved by refl in the model, then transports over it disappear, so concrete561

strict models can be defined in Agda without using any transports.562

External model constructions where the definitions of types (and substitutions and terms)563

don’t involve equations can be internalised immediately as strict models. This is the case for564

the setoid model using TyP, see [4]. In our case however, there is an equation expressing565

that the equivalence relation is a proposition. This makes the construction more involved as566

we have to prove that the witnesses of propositionality are equal.567

The answer to the above question is yes. This section was formalised in Agda [12].568

§ Construction 17. We construct a model of type theory with K, J, Σ, Π, a sort of propositions569

TyP closed under J, Σ, Π, a TyP-valued identity type with a strong transport rule and function570

extensionality. All equations of our model hold definitionally, with the exceptions irr, Σrs, ,rs,571

Πη, Πrs, lamrs.572

Construction. We explain the main components, for details consult the formalisation.573

We define contexts as setoids where the equivalence relation is a point-free proposition.574

Compare it with how contexts were defined in the external Construction 15.575

Con :” p|Γ| : Typeq576

ˆpΓ„ : |Γ| ˆ |Γ| Ñ Typeq577

ˆpΓp : isPfPropd Γ„q578

ˆpRΓ : pγx : |Γ|q Ñ Γ„ pγx, γxqq579

ˆpSΓ : Γ„ pγ0, γ1q Ñ Γ„ pγ1, γ0qq580

ˆpTΓ : Γ„ pγ0, γ1q Ñ Γ„ pγ1, γ2q Ñ Γ„ pγ0, γ2qq581
582

We don’t have equations on contexts, so it is not an issue that there is an equation (Γp) as583

one of the components. There will be an issue for types, see below.584

Substitutions are functions that respect the relations.585

Sub ∆ Γ :” p|γ| : |∆| Ñ |Γ|q ˆ pγ„ : ∆„ pδ0, δ1q Ñ Γ„ p|γ| δ0, |γ| δ1qq586

They form a category with function composition (for both |– | and –„ components) and the587

identity function. The categorical laws are definitional. The empty context is given by J588

with the constant J relation.589
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Types are displayed setoids with coercion and coherence (note that later we will replace590

types by their strictified variants).591

Ty Γ :”592

p|A| : |Γ| Ñ Typeq593

ˆpA„ : pγ0 : |Γ|q ˆ pγ1 : |Γ|q ˆ Γ„ γ0 γ1 ˆ |A| γ0 ˆ |A| γ1 Ñ Typeq594

ˆpAp : isPfPropdA„q595

ˆpRA : pax : |A| γxq Ñ A„ pγx, γx,RΓ γx, ax, axqq596

ˆpSA : A„ pγ0, γ1, γ01, a0, a1q Ñ A„ pγ1, γ0,SΓ γ01, a1, a0qq597

ˆpTA : A„ pγ0, γ1, γ01, a0, a1q Ñ A„ pγ1, γ2, γ12, a1, a2q Ñ A„ pγ0, γ2,TΓ γ01 γ12, a0, a2qq598

ˆpcoeA : Γ„ pγ0, γ1q Ñ |A| γ0 Ñ |A| γ1q599

ˆpcohA : pγ01 : Γ„ pγ0, γ1qqpa0 : |A| γ0q Ñ A„ pγ0, γ1, γ01, a0, coeA γ01 a0qq600601

Compared to the external version, we don’t need substitution laws (A„rs and coeArs) and602

instead of making the relation Prop-valued we add an element of the identity type saying603

that A„ is a point-free proposition. We can prove that two types are equal if their |– |, –„,604

–p, coe components are equal. The other components will be equal by –p. Unfortunately,605

due to Proposition 13 part (ii) (b), we have to show that the proofs of propositionalities –p
606

coincide.607

Substitution of types is given by function composition for the |– | and –„ components, for608

the –p component we use the fact that dependent point-free propositions are closed under609

reindexing. The reflexivity, symmetry and transitivity components of Arγs are constructed610

using transport and the corresponding components of A. The exact way they are constructed611

does not matter as they are proof irrelevant by Ap. We prove the substitution laws r˝s and612

rids up to the identity type using J.613

Terms are like substitutions, but with dependent functions.614

Tm ΓA :” p|t| : pγx : |Γ|q Ñ |A| γxqˆpt
„ : pγ01 : Γ„ pγ0, γ1qq Ñ A„ pγ0, γ1, γ01, |t| γ0, , |t| γ1qq615

The |– | and –„ components of context extension are given by Σ types, the propositionality616

component is using the fact that point-free propositions are closed under Σ.617

Analogously to the model in the previous section, we can show that we have K, J, Σ618

and Π types. The β rules are definitional for both Σ and Π, however for Π the η rule only619

holds up to the metatheoretic identity type. The reason is that |ΠAB| is defined as a Σ620

type consisting of a function from |A| to |B| and a proof that it respects the relation.621

|ΠAB| γx :”
`

f : pax : |A| γxq Ñ |B| pγx, axq
˘

ˆ622

pa01 : A„ pγx, γx,RΓ γx, a0, a1qq Ñ B„ ppγx, a0q, pγx, a1q, pRΓ γx, a01q, f a0, f a1q623
624

Two functions are related by pΠABq„ if they map related inputs to related outputs. Hence625

there are two (definitionally) different ways of proving that a t : Tm Γ pΠABq respects a626

(homogeneous) relation a01 : A„ pγx, γx,RΓ γx, a0, a1q. One is π2 p|t| γxq a01, the other is627

t„ pRΓ γxq a01. Because B„ is a proposition, these are equal, but only up to the identity type.628

And the eta rule computes to the usage of the two different versions on the two sides of the629

equation. We do not prove the substitution laws Krs, Jrs, Σrs, ,rs, Πrs, lamrs yet. There is630

no need to worry, we will prove them after replacing Ty with its strictified variant.631

If an equation is not definitional and there are later components in the model that depend632

on it (as lamrs depends on Πrs), it makes the model construction extremely tedious. The633

TYPES 2021
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situation one ends up in is also known as “transport hell”. As the functor laws r˝s, rids for634

types and terms are not definitional, almost every operation that mentions substitutions635

involves transports. Instead of fighting in transport hell and proving the transported versions636

of the laws Krs, . . . , lamrs, we follow the local universes approach [20]. We wrap Ty into Ty1637

which contains a base context, a substitution into this context and a Ty in this base context.638

Ty1 Γ :” pconA : Conq ˆ psubA : Sub Γ conAq ˆ ptyA : Ty conAq639

Substitution for Ty1 is defined as composition in the sub component, and as composition in640

the category is definitional, the laws r˝s, rids become definitional. Terms Tm1 and context641

extension –B1 – can be defined, and all the CwF equations are definitional. The type formers642

can be redefined as their primed versions K1, Σ1 and Π1. K1rs and J1rs hold definitionally,643

but Σ1rs and Π1rs rely on definitional β and η for Σ and Π (the ones defined for Ty), and we644

are missing an η for Π. Hence Σrs, ,rs, Πη, Πrs, lamrs only hold up to the identity type.645

We define TyP Γ as those families over |Γ| that are (point-free) propositional and which646

have coercion.647

TyP Γ :” p|A| : |Γ| Ñ Typeqˆ pAp : isPfPropd |A|q ˆ pcoeA : Γ„ pγ0, γ1q Ñ |A| γ0 Ñ |A| γ1q648

Ò is given by letting the relation be constant J, and showing closure under J, Σ and Π is649

straightforward. Proof irrelevance irr comes from the assumed equation Ap, hence it is not650

definitional. Definition of the TyP-valued identity type is analogous to the construction in651

the previous section. Strictification of TyP is analogous to that of Ty. đ652

We conjecture that without strictification (the replacement of Ty by Ty1) we can still653

prove all the equations, however this seems to be very difficult due to “transport hell”.654

8 Examples of strict algebraic structures655

Point-free equations can be used to define strict variants of algebraic structures. For example,656

internally to a model of type theory with a universe Type closed under Π, Σ, Id, a strict657

monoid is defined as follows.658

M : Type659

– b – : M Ñ M Ñ M660

ass : IdMÑMÑMÑM pλx y z.pxb yq b zq pλx y z.xb py b zqq661

o : M662

idl : IdMÑM pλx.ob xq pλx.xq663

idr : IdMÑM pλx.xb oq pλx.xq664
665

Compare it with the usual definition of monoid where the laws are stated using universal666

quantification:667

ass : px y z : Mq Ñ IdM ppxb yq b zq pxb py b zqq668

idl : px : Mq Ñ IdM pob xqx669

idr : px : Mq Ñ IdM pxb oqx670
671

If our model has canonicity, then in the empty context, for any strict monoid, the laws672

hold definitionally. For example, booleans where conjunction is defined as a ^ b :”673

if a then b else false do not form a strict monoid. We do have idl : true ^ b ” b, but we674



I. Donkó and A. Kaposi 8:19

don’t have idr or associativity definitionally, only propositionally. So booleans with –^–675

form a usual monoid, but not a strict monoid. Similarly, natural numbers with addition form676

a usual monoid, but not a strict monoid.677

In contrast, for any type A, the function space A Ñ A forms a monoid with f b g :”678

λx.f pg xq and o :” λx.x. We have associativity as λf g h.pf b gq b g ” λf g h x.f pg phxqq ”679

λf g h.f b pg b hq and the identity laws hold as e.g. λf.ob f ” λf x.f x ” λf.f .680

Strict monoids are closed under finite products following the η rule for ˆ. We can define681

displayed strict monoids over a strict monoid, and dependent product of strict monoids.682

Strict monoids are also closed by A-ary products for any type A. That is, given a strict683

monoid with carrier M , AÑM is also a strict monoid.684

Point-free propositions are another strict algebraic structure with no operations and685

only one equation: any two elements are equal. Closure under J and Σ give closure under686

(dependent) finite products, closure under Π is the same as having A-ary (dependent) products687

for any type A.688

We conjecture that for any (generalised) algebraic structure, we have a CwF with J, Σ689

and extensional Id of strict algebras internally to any model of intensional type theory. The690

category part of the CwF is the category of algebras and homomorphisms, terms and types691

are displayed algebras and sections, context extension is dependent product of algebras, and692

so on. This semantics was called finite limit CwF in [17].693

The term “strict” algebraic structure is only correct in intensional type theory. In a694

model with function extensionality, strict and usual monoids coincide.695

There is a stronger sense in which algebraic structures can be “strict”. Obviously, to696

define a strict monoid in the empty context, all laws have to hold definitionally. However697

when assuming a strict monoid and using it in a construction in this open context, the laws698

only hold up to propositional equality. It would be convenient to have implementations of699

type theory with strict algebraic structures in this stronger sense. Currently, Agda only700

supports one algebraic structure which is strict in this stronger sense: propositions.701

9 Summary702

In this paper we attempted to push the limits of what can be done in intensional type703

theory without function extensionality or uniqueness of identity proofs. We exploited the fact704

that in intensional type theory, in the empty context propositional and definitional equality705

coincide. We used this to define a dynamic universe of strict propositions internally. We706

expect that other strict algebraic structures with the expected properties can be defined707

along the same lines. In a strict algebraic structure, all equations are definitional. As we708

cannot assume definitional equalities in type theory, when we assume a member of a strict709

algebraic structure, the equations only hold propositionally. This makes it difficult to use such710

algebraic structures in practice. However we think that model constructions of type theory711

can be formalised as functions between strict models. We conjecture that the canonicity712

and normalisation displayed models from the corresponding proofs for type theory [10, 6]713

can be formalised in pure intensional type theory. These would be displayed over a strict714

model defined as a point-free algebraic structure. There are other inherent limitations of715

point-free propositions, e.g. the fact that we cannot prove that being a point-free proposition716

is a point-free proposition.717

Internal strict models can be externalised directly. We would like to understand in718

which circumstances internal non-strict models can be externalised into model constructions.719

Another open problem is whether isHProp pisPfPropAq is provable in intensional type theory.720
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A strict proposition-valued identity type with a strong transport rule was used to define721

presheaves [22] and a universe of setoids closed under dependent function space [3]. It is not722

clear whether such a type theory has normalisation [1]. Currently the only justification that723

we know for this strong transport rule is the setoid model construction. We showed that such724

an identity type can be derived in intensional type theory using point-free propositions. It725

seems that our construction is limited, the model we constructed does not include a universe726

of propositions or inductive types. In the future, we would like to circumscribe the exact727

conditions that the input model has to satisfy in order to obtain inductive types and universes728

from the setoid model construction.729
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