# microbiomeR Theoretical models for antibiotic resistance epidemiology. R code and a Mathematica notebook to support Smith et al., (2021). Microbiome-pathogen interactions drive epidemiological dynamics of antibiotic resistance: modelling insights for infection control # about We present a suite of ODE models describing bacterial colonization dynamics in the healthcare setting. Each model accounts for different within-host interactions: * Model 1: bacterial colonization * Model 2: exclusive colonization strain competition * Model 3: microbiome-pathogen competition * Model 4: strain-microbiome competition * Model 5: strain-microbiome competition with interspecific horizontal gene transfer Models are evaluated using the same parameter set corresponding to a generic pathogen (C^R). ODEs are integrated numerically. Epidemiological outcomes at population dynamic equilibrium are evaluated using univariate and bivariate analysis. # repository files (R) * microbiomeR.Rproj * associated R project * ODEs.R * ODEs for each model * parameters.R * initial state variable vectors for each model * parameter vector for generic C^R * alternative parameter vectors for various analyses * functions.R * functions returning epidemiological outcomes at population dynamic equilibrium: prevalence, incidence, resistance rate * solve.R * execute analyses * figures.R * render figures # repository files (Mathematica) * microbiome_ecology.nb * notebook containing model ODEs, R0 expressions, numerical solutions, figures # contact David Smith \ Institut Pasteur / Inserm / UVSQ \ david.smith@pasteur.fr \ davidrobertmundysmith@gmail.com