
Previous Formulas

1 Previous version

Card(E1 ./ E2) = MIN(Card(E1), Card(E2)) (1)

Cost(E1 ./h E2) = Card(E1) ∗ CRT + Card(E2) ∗ CRT + 2 ∗ CSQ (2)

Cost(E1 ./b E2) = Card(E1)∗CRT +
Card(E1)

BSZ
∗CSQ+Card(E1 ./ E2)∗CRT (3)

where the cost for sending a SPARQL query is CSQ, the cost for receiving a single
result tuple is CRT and BSZ is the size of a bound join block.

In our experiments CSQ=50, CRT=0.02, BSZ=20

2 Modified version

Card(E1 ./ E2) = MIN(Card(E1), Card(E2)) ∗MVK(E1) ∗MVK(E2) (4)

where MVK(E1) and MVK(E2) are multivalue multiplyers of E1 and E2 respectively.

MVK(E) =


1√
2

: E is a triple pattern like ?s <p> <o> .
triple count for given predicate

distinct subject count : E is a triple pattern like ?s <p> ?o. The join variable is ?s.
triple count for given predicate

distinct object count : E is a triple pattern like ?s <p> ?o. The join variable is ?o.

1 : other cases

Cost(E1 ./h E2) =
1 + TC

TC
∗CSQ+Card(E2)∗CRT +(Card(E1)+Card(E2))∗CHT

(5)
where Card(E1) < Card(E2), TC is the number of threads used to query sparql end-
points, CSQ is the cost of sending a SPARQL query, CRT is the cost of receiving a single
result tuple, CHT is the cost of handling received tuple.

Description: the hash join algorithm sends 2 requests for E1 and E2 using TC threads
(cost = first summand in the (5)), then recieves results for E1 and E2 in parallel, so cost
= Max(Card(E1), Card(E2)) * CRT = Card(E2) * CRT, finally all the tuples received

1



are handled: the internal implementaion uses hashmap with synchronized access to store
data, so cost can be estimated as (Card(E1) + Card(E2)) * CHT

Cost(E1 ./b E2) = CSQ+Card(E1) ∗CRT +
Card(E1)+BSZ−1

BSZ + CTC − 1

CTC
∗CSQ (6)

The bind join algo at first sends the request for E1 (cost = CSQ), receives results for
E1 (cost = Card(E1) * CRT), then using TC threads sends resuests for E2 using bunch
of BSZ size (cost = third summand in the formula (6))

In our experiments CSQ=100, CRT=0.01, 0.0025, BSZ=20, TC=20

2


