
COMPUTATIONAL INFRASTRUCTURE FOR GEODYNAMICS (CIG)

CitcomS
User Manual

Version 3.3.0

Eh Tan
Michael Gurnis

Luis Armendariz
Leif Strand

Susan Kientz
www.geodynamics.org

CitcomS User Manual

October 9, 2014

2

Contents

I Preface 9

II Chapters 13

1 Introduction 15
1.1 About CitcomS . 15
1.2 History . 15
1.3 Governing Equations . 18
1.4 Numerical Methods . 20
1.5 Meshes and Geometry . 21

2 Installation and Getting Help 25
2.1 Introduction . 25
2.2 Getting Help . 25
2.3 System Requirements . 25

2.3.1 C Compiler . 26
2.3.2 MPI Library . 26

2.3.2.1 MPI C Compiler Command . 26
2.4 Downloading and Unpacking Source . 26
2.5 Installation Procedure . 27

2.5.1 Installing to a Secondary Location (Optional) . 27
2.6 Configuration . 27

2.6.1 Configure Usage . 28
2.6.2 Environment Variables . 28
2.6.3 MPI Configuration . 28

2.6.3.1 Manually Specifying MPI include and lib Directories 28
2.6.3.2 Manually Specifying MPI include and lib Directories and an Alternative Com-

piler . 29
2.7 HDF5 Configuration (Optional) . 29

2.7.1 Additional Tools . 29
2.7.1.1 NumPy . 29
2.7.1.2 PyTables . 29
2.7.1.3 HDFView . 30
2.7.1.4 OpenDXutils . 30

2.8 GGRD Configuration (Optional) . 30
2.9 Installing from the Software Repository . 30

2.9.1 Tools You Will Need . 30
2.9.2 Download Source from Subversion . 31
2.9.3 Generating the GNU Build System . 31

3

4 CONTENTS

3 Running CitcomS 33
3.1 Using CitcomS . 33
3.2 Changing Parameters . 33
3.3 Uniprocessor Example . 33

3.3.0.1 Example: Uniprocessor, example0 . 34
3.4 Multiprocessor Example . 34

3.4.0.2 Example: Multiprocessor, example1 . 34
3.4.1 Output Formats . 36

4 Working with CitcomS HDF5 Files 37
4.1 Introduction . 37
4.2 About HDF5 . 37
4.3 Input Parameters . 38

4.3.1 Optimizing Parallel I/O . 38
4.4 Data Layout . 39
4.5 Accessing Data . 40

4.5.1 Inspecting Structures . 40
4.5.2 Converting to ASCII Files . 40
4.5.3 Accessing Data in Python . 40
4.5.4 Accessing Data Using HDFView . 40

5 Postprocessing and Graphics 43
5.1 Introduction . 43
5.2 Postprocessing on a Beowulf Cluster . 43
5.3 Postprocessing in a Non-Cluster Environment . 44
5.4 Using OpenDX for Regional Sphere Visualization . 44
5.5 Using OpenDX for Full Sphere Visualization . 46
5.6 Using OpenDX for HDF5 Visualization . 46
5.7 Using MayaVi for Visualization . 47
5.8 Using GMT Commands for Visualization . 49

6 Cookbooks 51
6.1 Introduction . 51
6.2 Cookbook 1: Global Model . 51

6.2.1 Problem . 51
6.2.2 Solution . 52

6.2.2.1 Example: Global Model, cookbook1 . 52
6.2.3 Discussion . 53

6.3 Cookbook 2: Domain Size and Velocity Boundary Conditions . 54
6.3.1 Problem . 54
6.3.2 Solution . 54

6.3.2.1 Example: Velocity Boundary Conditions, cookbook2 54
6.3.3 Discussion . 55

6.4 Cookbook 3: Temperature-Dependent Viscosity . 56
6.4.1 Problem . 56
6.4.2 Solution . 56

6.4.2.1 Example: Temperature-Dependent Viscosity, cookbook3 57
6.5 Cookbook 4: Regionally Refined Meshes . 60

6.5.1 Problem . 60
6.5.2 Solution . 60

6.5.2.1 Example: Regionally Refined Meshes, cookbook4 60
6.5.3 Discussion . 61

6.6 Cookbook 5: Subduction Models with Trench Rollback . 62
6.6.1 Problem . 62

CONTENTS 5

6.6.2 Solution . 62
6.6.2.1 Example: Subduction Models with Trench Rollback, cookbook5 63

6.6.3 Discussion . 64
6.7 Cookbook 6: Pseudo-Free-Surface Formulation . 65

6.7.1 Problem . 65
6.7.2 Solution . 65
6.7.3 Discussion . 65

6.8 Cookbook 7: Thermo-Chemical Convection . 67
6.8.1 Problem . 67
6.8.2 Solution . 67

6.8.2.1 Example: Thermo-Chemical Convection, cookbook7 68
6.8.3 Discussion . 69

6.9 Cookbook 8: Compressible Steady-State Convection . 71
6.9.1 Problem . 71
6.9.2 Solution . 71

6.9.2.1 Example: Compressible Steady-State Convection, cookbook8 73
6.9.3 Discussion . 75

III Appendices 77

A Input Parameters for CitcomS 79
A.1 Input Parameters Grouped by Functionality . 79

A.1.1 Parameters that Control Input Files . 79
A.1.2 Parameters that Control Output Files . 80
A.1.3 Mesh and Processors Setup . 80
A.1.4 Domain Size . 81
A.1.5 Restarting the Code . 81
A.1.6 Run Length . 81
A.1.7 Initial Conditions . 81
A.1.8 Boundary Conditions . 83
A.1.9 Non-Dimensional Numbers . 83
A.1.10 Depth Information . 83
A.1.11 Viscosity . 83
A.1.12 Phase Change Information . 85
A.1.13 Momentum Equation Solver Parameters . 85
A.1.14 Energy Equation Solver Parameters . 86
A.1.15 Age Information . 86
A.1.16 Debugging Information . 86
A.1.17 HDF5 Output Parameters . 86
A.1.18 Tracer Parameters . 87
A.1.19 Dimensional Information . 87
A.1.20 Required Information . 87

B CitcomS Input File Format 89
B.1 Introduction . 89
B.2 Coordinate Files . 89
B.3 Velocity Boundary Condition Files . 90
B.4 Material Files . 90
B.5 Lithosphere Age Files . 91
B.6 Tracer Files . 91
B.7 Reference State Files . 91

6 CONTENTS

C CitcomS Output File Format 93
C.1 Introduction . 93
C.2 Postprocessed Cap Output (test-case.cap00.10) . 93
C.3 Postprocessed Opt Output (test-case.opt00.10) . 93
C.4 Postprocessed Surf Output (test-case.surf0.10) . 93
C.5 Time Output (test-case.time) . 94
C.6 ASCII Output . 94

C.6.1 Coordinate Output (test-case.coord.0) . 94
C.6.2 Velocity and Temperature Output (test-case.velo.0.10) 94
C.6.3 Viscosity Output (test-case.visc.0.10) . 94
C.6.4 Material Output (test-case.mat.0) . 94
C.6.5 Surface Variables Output (test-case.surf.0.10 and test-case.botm.0.10) . . . 94
C.6.6 Stress Output (test-case.stress.0.10) . 94
C.6.7 Pressure Output (test-case.pressure.0.10) . 95
C.6.8 Horizontal Average Output (test-case.horiz_avg.0.10) 95
C.6.9 Geoid Output (test-case.geoid.10) . 95
C.6.10 Tracer Output (test-case.tracer.0.10) . 95
C.6.11 Composition Output (test-case.comp_el.0.10 and test-case.comp_nd.0.10) 95
C.6.12 Heating Output (test-case.heating.0.10) . 95

C.7 HDF5 Output (test-case.h5) . 96
C.8 Misc. Binary Output . 96

C.8.1 Checkpoint Output (test-case.checkpoint.0.10) 96
C.8.2 Domain Output (test-case.domain) . 96
C.8.3 Coordinate Binary Output (test-case.coord_bin.0) 96
C.8.4 Seismic Output (test-case.seismic.0.10) . 96

D License 97

List of Figures

1.1 Global Node Numbering. Left: Global node numbering starts at the base of arrow A (theta_min,
fi_min, radius_inner), and advances from 1 at the base to nodez at the tip. Upon reaching the tip,
numbering continues from the base of arrow B (nodez+1) to its tip (2 nodez), and so on for all nodes
on the plane fi = fi_min. Right: After completing each theta radius plane, the fi index is incremented
and numbering commences from (theta_min, radius_inner) as on the left. 21

1.2 Topological connectivity of the 12 caps. N is the north pole and S is the south pole. The red line marks
the 0 degree meridian. 22

1.3 Orthographic projection of processors from a full CitcomS mesh in which there are 16 processors in
map view for each cap. The CitcomS cap is shown as distinct colors while the processor domains
within the caps are indicated by the intensity of the color. This example was produced for a run with
2 processors in radius such that the total number of processors was 12×16×2=384. 23

3.1 Computational Domain. Map view on the configuration of the top layer of the computational nodes
and the processors. 36

4.1 A screenshot of HDFView. The left panel shows the hierarchy of the groups and datasets. The right
panel shows a 2D slice of a dataset. The bottom panel shows the metadata associated with the selected
group or dataset. 41

5.1 Regional Model Visualized with OpenDX. A snapshot of an upwelling (blue isosurface) with a slice
of the temperature field (bisecting plane). 45

5.2 How to import CitcomS HDF5 data. The CitcomSImportHDF5 module is highlighted in the Tools
panel. 47

5.3 Example MayaVi2 visualization of cookbook1.100.h5. Here we display the velocity field as vec-
tors, as well a slice of the temperature field. Note the visualization pipeline in the tree view on the left
panel. 48

5.4 Temperature field generated by plot_layer.py. This image is the mid-layer (layer 5) of the sample
data visual/samples/regtest.cap00.100. The resolution of the image is poor because the
data has only 9×9×9 nodes. 49

5.5 Temperature fields generated by plot_annulus.py. The top panel is the horizontal cross section
at the mid layer in Hammer-Aitoff projection. The thick line marks the surface track of the radial cross
section. The bottom panel is the radial cross section. The cross section starts at 0◦ latitude and 0◦ longi-
tude and has an azimuth of 45◦. The image is from the sample data visual/samples/fulltest.cap*.100.
There is always a gap on the left (starting point) of the cross section. Users familiar with GMT are
welcome to contribute a fix to the script. 50

6.1 Global Model “Caps.” Left (A): Three-dimensional perspective image showing seven of the 12 spher-
ical caps used in a full CitcomS run. Right (B): The temperature field at 1081 km depth from a
Cookbook 1 run. 51

6.2 Cookbook 1: Global Model. This image, created by OpenDX, depicts a slice through a spherical model
of convection, with warmer colors indicating upwelling and the cooler colors showing downwelling. . 53

7

8 LIST OF FIGURES

6.3 Cookbook 2: Velocity Boundary Conditions. This model, visualized with OpenDX, highlights a region
of the sphere and the heated upwellings (warm colors), downwellings (cool colors), and the velocities
(yellow arrows). 56

6.4 Cookbook 3: Temperature-Dependent Viscosity. This model, visualized with OpenDX, highlights a
region that features both the heated upwelling (warm colors) and the even distribution of the velocities
(arrows). 59

6.5 Cookbook 4: Regionally Refined Mesher. This model shows the temperature (upwelling – warm
colors, downwelling – cool colors) and the uneven distribution of the velocities (yellow arrows). Note
the refined mesh for the left and bottom regions of the model (inset). 61

6.6 Cookbook 5: Left (A): Initially, both plates have Euler poles (magenta and green dots) situated far
apart from the plate, so the velocities are approximately constant (about 5 cm/yr for the left plate and
about 2 cm/yr for the right plate). Right (B): After 30 Ma a pole jump occurred for the right slab only,
so the Euler pole moved closer. 63

6.7 Cookbook 5: The pole jump after 30 Ma produced a flat slab on one side (fore side) and a steep slab
on the other side (back side). 64

6.8 Cookbook 6: Graphs of topography profiles. 66
6.9 Cookbook 7: The composition and velocity field at the 15th step. The arrows are the velocity vectors.

The composition field is shown in an isosurface of 0.7 and in a cross section. 69
6.10 Cookbook 8: The steady state temperature field at the 10,000th time step. A tetrahedral symmetric

convection pattern is developed. Two temperature isosurfaces of 0.4 and 0.8 are shown. 76

Part I

Preface

9

Preface

About This Document
This document is organized into three parts. Part I consists of traditional book front matter, including this preface.
Part II describes the capabilities of CitcomS and the details of implementation, including several “cookbooks” of short
tutorials. Part III provides appendices and references.

The style of this publication is based on the Apple Publications Style Guide (developer.apple.com/documentation/
UserExperience/Conceptual/APStyleGuide/AppleStyleGuide2003.pdf), as recommended by Python.org
(www.python.org). The documentation was produced using LATEX, specifically the pdflatex tool from the
TeXLive distribution (www.tug.org/texlive).

Errors and bug fixes in this manual should be directed to the CIG Mantle Convection Mailing List (cig-mc@
geodynamics.org).

Who Will Use This Document
This documentation is aimed at two categories of users: scientists who prefer to use prepackaged and specialized
analysis tools, and experienced computational Earth scientists. Of the latter, there are likely to be two classes of users:
those who just run models, and those who modify the source code. Users who modify the source are likely to have
familiarity with scripting, software installation, and programming, but are not necessarily professional programmers.

The manual was written for the usage of CitcomS on a variety of different platforms. CitcomS has run on shared
memory computers (Sun, Hewlett-Packard, SGI, and IBM), commercial distributed memory machines (Intel and
Cray/SGI), clusters (including machines on the NSF TeraGrid), Linux PCs and Mac OS X desktops.

Citation
Computational Infrastructure for Geodynamics (CIG) is making this source code available to you in the hope that the
software will enhance your research in geophysics. The underlying C code for the finite element package and the
Python bindings for the framework were donated to CIG in July of 2005. A number of individuals have contributed a
significant portion of their careers toward the development of CitcomS and Pyre. It is essential that you recognize these
individuals in the normal scientific practice by citing the appropriate peer reviewed papers and making appropriate
acknowledgements.

The CitcomS development team asks that you cite both of the following:

• Zhong, S., M.T. Zuber, L.N. Moresi, and M. Gurnis (2000), The role of temperature-dependent viscosity and
surface plates in spherical shell models of mantle convection. J. Geophys. Res., 105, 11,063-11,082

• Tan, E., E. Choi, P. Thoutireddy, M. Gurnis, and M. Aivazis (2006), GeoFramework: Coupling multiple
models of mantle convection within a computational framework, Geochem., Geophys., Geosyst. 7, Q06001,
doi:10.1029/2005GC001155.

Additionally, if you are using tracers in CitcomS, please cite the following:

• McNamara, A.K., and S. Zhong (2004), Thermochemical structures within a spherical mantle: Superplumes or
Piles?, J. Geophys. Res., 109, B07402, doi:10.1029/2003JB002847.

11

developer.apple.com/documentation/UserExperience/Conceptual/APStyleGuide/AppleStyleGuide2003.pdf
developer.apple.com/documentation/UserExperience/Conceptual/APStyleGuide/AppleStyleGuide2003.pdf
www.python.org
www.tug.org/texlive
cig-mc@geodynamics.org
cig-mc@geodynamics.org

12

The developers also request that in your oral presentations and in your paper acknowledgements that you indicate your
use of this code, the authors of the code, and CIG (geodynamics.org).

Support
Pyre development was funded by the U.S. Dept. of Energy’s Advanced Simulation and Computing program (www.
sandia.gov/NNSA/ASC) and the National Science Foundation’s (www.nsf.gov) Information Technology Re-
search (ITR) program (grant #0205653). Continued support of CitcomS is based upon work supported by the National
Science Foundation under Grant No. EAR-0406751. Any opinions, findings, and conclusions or recommendations
expressed in this material are those of the authors and do not necessarily reflect the views of the National Science
Foundation.

Conventions
Throughout this documentation, any mention of “username” is meant to indicate the user, meaning you should substi-
tute your account name in its place.

geodynamics.org
www.sandia.gov/NNSA/ASC
www.sandia.gov/NNSA/ASC
www.nsf.gov

Part II

Chapters

13

Chapter 1

Introduction

CitcomS is a finite element code designed to solve thermal convection problems relevant to earth’s mantle released
under the GNU General Public License (see Appendix D on page 97). Written in C, the code runs on a variety of
parallel processing computers, including shared and distributed memory platforms.

1.1 About CitcomS
CitcomS is a finite element code written in C that solves for thermo-chemical convection within a spherical shell. It
can solve for problems within either a full or a restricted spherical domain. Although the code is capable of solving
many different kinds of convection problems using the flexibility of finite elements, there are aspects of CitcomS
which make it well-suited for solving problems in which the plate tectonic history is incorporated. Variable viscosity,
including temperature-, pressure-, position-, composition-, and stress-dependent viscosity are all possible.

The fundamental basis for the numerical solution of any time-dependent convection problem is the sequential
solution of an equation of motion and an energy equation. Convection problems are initially valued with boundary
conditions, including all of the problems which are solved with CitcomS. The normal sequence of steps for the solution
of convection problems starts with an initial temperature field. First, the momentum equation is solved. The solution
of this equation gives us the velocity from which we then solve the advection-diffusion equation, giving us a new
temperature. CitcomS uses this interleaved strategy. It is possible to run convection backward in time so as to guess
an initial condition for a normal forward running initial and boundary value problem. However, users should be aware
that even specialists in mantle convection modeling are just now starting to explore methods in this area and, as such,
this is an emerging area of research.

This code uses an iterative solution scheme to solve for the velocity and pressure and, as such, a converged solution
cannot be guaranteed. Nested inside the iterative scheme, the code uses either a conjugate gradient solver or a full
multi-grid solver to solve the discretized matrix equations.

1.2 History
Citcom (for California Institute of Technology Convection in the Mantle) was originally written in the early 1990s
by Louis Moresi. Although the code for three-dimensional problems was incorporated from its inception, early ver-
sions of the software only solved for time-dependent convection problems within two-dimensional Cartesian domains.
Moresi’s original code turned out to be incredibly modular and easily extensible. Consequently, the fundamental finite
element infrastructure which Louis wrote is still in place and forms the basis for much of the code contained in the
present release.

In the mid-1990s Moresi wrote versions of the code that solved the equations within three-dimensional Cartesian
domains. Then Shijie Zhong successfully parallelized Citcom using message passing routines on a limited release Intel
supercomputer. Zhong then created a spherical version of the code which he named CitcomS. Lijie Han then created
a regional version of CitcomS as well as an alternate version of message passing for an arbitrarily large number of
processors. Clint Conrad created the first Beowulf implementations of the code using the MPI library, then Conrad and
Eh Tan re-coded the message passing of the fully spherical version so that problems run on arbitrarily large numbers of

15

16 CHAPTER 1. INTRODUCTION

processors could also be solved. A plethora of different versions of Citcom exist both on computers at the California
Institute of Technology and around the world.

Consequently, by 2002, there were so many different versions of the code that some rationalization was in order.
The software was migrated into a version control system and Eh Tan and Eun-seo Choi created a version of CitcomS
that generates either a fully spherical or regional model. CitcomS was released to the community through the former
GeoFramework project as version 1.0 and 1.1.

By 2004, in order to increase the functionality of CitcomS, the developers began to reengineer the code into an
object-oriented environment specifically so it could work with a Python-based modeling framework called Pyre. This
release of the software is essentially the product of those reengineering efforts. Eh Tan was the principal developer of
CitcomS, with considerable help from Eun-seo Choi, Puru Thoutireddy, and Michael Aivazis.

CitcomS is one component of a larger collection of software encompassed by the former GeoFramework project, a
collaboration between the Center for Advanced Computing Research (CACR) (www.cacr.caltech.edu) and the
Seismological Laboratory (www.gps.caltech.edu/seismo), both at Caltech, and the Victorian Partnership for
Advanced Computing (www.vpac.org) in Australia. The GeoFramework project developed a suite of tools to model
multi-scale deformation for Earth science problems. This effort was motivated by the need to understand interactions
between the long-term evolution of plate tectonics and shorter term processes such as the evolution of faults during
and between earthquakes. During 2005 and 2006 much of the remaining software developed by GeoFramework was
released under a GPL license and made available from CIG (geodynamics.org).

The second major release of CitcomS (2.0) incorporated the software framework Pyre, free surface modeling
methods, and stress boundary conditions on the top and bottom surfaces. In the summer of 2005, as part of the 2.0.1
release, CIG replaced the old build procedure with the GNU Build System. A subsequent release, version 2.0.2, could
compile and run on 64-bit systems.

The release of CitcomS 2.1 incorporated new features and functionality, the most important being the use of HDF5
(a parallel version of the Hierarchical Data Format). The HDF5 format allows you to deal with the massive data
output created for production runs (see Chapter 4 on page 37). This version accepted .cfg files on input, which
are easier to create and read. Other improvements included the incorporation of geoid calculations that had been left
out of earlier releases, as well as new scripts to allow results to be visualized with MayaVi2 (svn.enthought.
com/enthought/wiki/MayaVi) in addition to Generic Mapping Tools (GMT) (gmt.soest.hawaii.edu)
and OpenDX (www.opendx.org). Instructions were provided on using this version as a preinstalled package on
some of the NSF TeraGrid sites.

The release of CitcomS 2.2 incorporated the ability of tracing particles in the flow. The tracer code was developed
by Allen McNamara and Shijie Zhong in 2004 and donated to CIG in early 2007. The tracer code has a wide range
of applications in the mantle convection. It can be used in tracing the trajectory of passive particles, in delineating
the top boundary of subducted slabs to define the low viscosity wedges, or in tracking the evolution of the chemical
composition field.

The release of CitcomS 3.0 contains many new features, including two implementations of compressible convec-
tion, one by Wei Leng and Shijie Zhong and the other by Eh Tan; the ability to resume computation from previous
checkpoints; multi-component chemical convection; a fixed non-Newtonian solver; an exchanger package for solver
coupling; removing the rigid body rotation component from the velocity by Shijie Zhong; and an option to disable
monitoring of maximum temperature. In addition, a rheology option for pseudo-plasiticity, composition dependent
viscosity and heat generation, compressed ASCII output, and an easier way for mesh refinement for the radial coordi-
nate were added by Thorsten Becker.

Additional changes that are not backward compatible include (1) the viscosity field at element level is not smoothed
(this might slow down the convergence but will represent the viscosity field more accurately); (2) the Lenardic filter
on temperature is disabled by default; (3) the rigid body rotation component is removed from the velocity by default;
(4) use of a better pseudo-random number generator to generate the initial tracer; (5) the type of input parameter coor
is changed from a boolean to an integer; (6) setting restart=on will resume the computation from the checkpoint
files and will not need the tracer files (the old way of reading initial temperature from velo files can be achieved by
tic_method=-1); and (7) the input parameter reset_initial_composition becomes obsolete. Among the
seven backward-incompatible changes, the first four will affect the results.

The release of CitcomS 3.1 added the ability to convert temperature and composition to seismic velocities. The
seismic velocities output can be uploaded to the CIG Seismology Web Portal for SPECFEM3D simulation to gen-
erate synthetic seismograms. Other enhancements include adding a self-gravitational effect on geoid and adding
the Consistent-Boundary-Flux (CBF) method to compute dynamic topography, contributed by Shijie Zhong. Also,

www.cacr.caltech.edu
www.gps.caltech.edu/seismo
www.vpac.org
geodynamics.org
svn.enthought.com/enthought/wiki/MayaVi
svn.enthought.com/enthought/wiki/MayaVi
gmt.soest.hawaii.edu
www.opendx.org

1.2. HISTORY 17

GMT/NetCDF grd input was added for surface velocity boundary conditions, initial temperature, material dependence
and local Rayleigh number in surface layers, contributed by Thorsten Becker. Mike Gurnis contributed added capa-
bility to read in time- and geographic-dependent, top surface temperature boundary conditions. Finally, this version
allows multi-component chemical viscosity.

Some of the aforementioned features are backward-incompatible, including:

1. The global mesh is changed. The coordinates of all nodes are slightly shifted laterally. The change is not visually
discernible, but does affect the solution compared to previous versions.

2. The convergence criterion of the Stokes solver is changed. A single parameter “accuracy” is used to control
the accuracy of the continuity and momentum equations. The default value of “accuracy” was 10−6 and is now
10−4.

3. The input parameter “mantle_temp” is moved from the [CitcomS.solver.param] to the [CitcomS.solver.ic] sec-
tion.

The release of CitcomS 3.2 added numerous changes since 3.1.1 which was released in 2009. These include improved
implementations of internal stress, radial layer dependent viscosity, and velocity boundary conditions. Improvements
have also been made in solver convergence controls, VTK output and several bug fixes. Other enhancements include:

• Trial implementation of anisotropic viscosity.

• Added support of multigrid solver in Exchanger.

• Improved handling of grd-read velocity and traction boundary conditions.

• Changed default parameters for z_410, z_lmantle, z_lith to more Earth-like parameters.

• Added test implementation of steady state strain-rate weakening via PDEPV psrw=on parameter.

• Added Murnaghan’s integrated linear EoS.

• Added augmented Lagrangian component of stiffness matrix in cbf topo.

• Performance optimizations for CUDA code. Contributed by Leif Strand.

• Fixed several bugs in the code and manual, including:

– Fixed a bug in pseudo free surface, reported by Robert Moucha.

– Correctly handle orphan tracers.

– Replaced fixed accuracy setting. Bug reported by Rob Moucha.

– Fixed temperature perturbation bug for multiple processors.

This release (3.3) removes the Python dependencies from CitcomS and provides a tool to convert Python style
parameter files to the original CitcomS parameter files. Python support was proving problematic because of incom-
patibility with versions of Python newer than 2.6 (final release 2008) and other internal issues. The removal of Python
should simplify much of the code while retaining almost all functionality. A full list of the changes includes:

• Removed Python sections of CitcomS

• Wrote Python to standard parameter file conversion tool (Py2C)

• Converted Python cookbooks parameter files to original style parameter files

• Added output of parameters to a pidXXXXXX style file

• Updated the manual to correspond to the new changes

18 CHAPTER 1. INTRODUCTION

1.3 Governing Equations
With CitcomS, the mantle is treated as an anelastic, compressible, viscous spherical shell under Truncated Anelastic
Liquid Approximation. With these assumptions, thermal convection is governed by the equations for conservation of
mass, momentum, and energy:

(ρui),i = 0 (1.1)

−P,i +

(
η(ui,j + uj,i −

2

3
uk,kδij)

)
,i

− δρgδir = 0 (1.2)

ρcP (T,t + uiT,i) = ρcPκT,ii − ραgurT + Φ + ρ (QL,t + uiQL,i) + ρH (1.3)

where ρ is the density, u is the velocity, P is the dynamic pressure, η is the viscosity, δij is the Kroneker delta tensor, δρ
is the density anomaly, g is the gravitational acceleration, T is the temperature, cP is the heat capacity, κ is the thermal
diffusivity, α is the thermal expansivity, Φ is the viscous dissipation, QL is the latent heat due to phase transitions,
and H is the heat production rate. The expression X,y represents the derivative of X with respect to y, where i and
j are spatial indices, r is the radial direction, and t is time. With phase transitions and temperature and composition
variations, the density anomalies are:

δρ = −αρ̄(T − T̄a) + δρphΓ + δρchC (1.4)

where ρ̄ is the radial profile of density, T̄a is the radial profile of adiabatic temperature, δρph is the density jump
across a phase change, δρch is the density difference between the compositions, Γ is the phase function, and C is the
composition. The phase function is defined as:

π = ρ̄g(1− r − dph)− γph(T − Tph) (1.5)

Γ =
1

2

(
1 + tanh

(
π

ρ̄gwph

))
(1.6)

where π is the reduced pressure, dph and Tph are the ambient depth and temperature of a phase change, γph is the
Clapeyron slope of a phase change, and wph is the width of a phase transition.

These equations lead to the following normalization in which primed quantities are nondimensional:

ρ = ρ0ρ
′

(1.7)

α = α0α
′

(1.8)

g = g0g
′

(1.9)

1.3. GOVERNING EQUATIONS 19

κ = κ0κ
′

(1.10)

η = η0η
′

(1.11)

cP = cP0c
′

P (1.12)

xi = R0x
′

i (1.13)

ui =
κ0
R0

u
′

i (1.14)

T0 = ∆TT ′0 (1.15)

T = ∆T (T ′ + T ′0) (1.16)

t =
R2

0

κ0
t
′

(1.17)

H =
κ0
R2

0

cP0∆TH
′

(1.18)

P =
η0κ0
R2

0

P
′

(1.19)

dph = R0d
′

ph (1.20)

γph =
ρ0g0R0

∆T
γ
′

ph (1.21)

where ρ0 is the reference density, α0 is the reference thermal expansivity, g0 is the reference gravity, κ0 is the reference
thermal diffusivity, η0 is a reference viscosity, cP0 is the reference heat capacity, R0 is the radius of the Earth, T0 is
the temperature at the surface, and ∆T is the temperature drop from the core-mantle boundary (CMB) to the surface.
Dropping the primes, the equations become:

ui,i +
1

ρ̄

dρ̄

dr
ur = 0 (1.22)

−P,i +

(
η(ui,j + uj,i −

2

3
uk,kδij)

)
,i

+ (Raρ̄αT −RabΓ−RacC)gδir = 0 (1.23)

ρ̄cP (T,t + uiT,i)
(

1 + 2Γ (1− Γ)
γ2
ph

dph
Rab
Ra Di (T + T0)

)
= ρ̄cPκT,ii

−ρ̄αgurDi (T + T0)
(

1 + 2Γ (1− Γ)
γph
dph

Rab
Ra

)
+ Di

RaΦ + ρ̄H
(1.24)

20 CHAPTER 1. INTRODUCTION

where Ra, the thermal Rayleigh number, is defined as:

Ra =
ρ0g0α0∆TR3

0

η0κ0
(1.25)

This is not the usual definition of the Raleigh number that is based on layer thickness; it is based on the radius of the
EarthR0. So for mantle convection problems whereR0 is slightly more than twice the layer thickness, ourRa is about
a factor of 10 larger than by the usual definition. The phase-change Rayleigh number, Rab, the chemical Rayleigh
number, Rac, the internal heating Rayleigh number, RaH , and the dissipation number Di , are defined as:

Rab = Ra
δρph

ρ0α0∆T
(1.26)

Rac = Ra
δρch

ρ0α0∆T
(1.27)

RaH = RaH
R3

0 −R3
CMB

3R3
0

(1.28)

Di =
α0g0R0

cP0
(1.29)

1.4 Numerical Methods
The governing equations are solved with the finite element method [9]. CitcomS employs an Uzawa algorithm to solve
the momentum equation coupled with the incompressibility constraints [4, 10]. The energy equation is solved with a
Steamline-Upwind Petrov-Galerkin method [11]. Brick elements are used, such as eight velocity nodes with trilinear
shape functions and one constant pressure node for each element. The use of brick elements in 3D (or rectangular
elements in 2D) is important for accurately determining the pressure, which controls the dynamic topography, in
incompressible Stokes flow [9]. The discrete form of Equations 1.22 and 1.23 may be written in the following matrix
form [6]:

(
BT + C

)
u = 0 (1.30)

Au+Bp = f (1.31)

where A is the “stiffness” matrix, u is a vector of unknown velocities, B is the discrete gradient operator, C is
the second term in Equation 1.22, p is a vector of unknown pressures, and f is a vector composed of the body and
boundary forces acting on the fluid. The individual entries of A, B, C and f are obtained using a standard finite
element formulation; see [6] for the explicit entries.

In the incompressible case, C is zero. Equation 1.31 can be transformed by premultiplying by BTA−1 and using
Equation 1.30 to eliminate the velocity unknowns:

BTA−1Bp = BTA−1 f (1.32)

1.5. MESHES AND GEOMETRY 21

This equation is solved using the Uzawa algorithm, an established method for solving the minimization of a dual
function [12], which simultaneously yields the velocity field. A conjugate gradient scheme [10, 13] is used for this
iteration and forms the basis for the technique used in CitcomS.

In the compressible case, there are two different strategies to solve Equations 1.30 and 1.31. The first strategy is
to add another layer of iterations when solving Equation 1.32. The right-hand-side vector is updated by the velocity
solution of the previous iteration. This equation can be solved using the same conjugate gradient scheme as the
incompressible case.

BTA−1Bp(i) = BTA−1 f −Cu(i−1) (1.33)

The second strategy is to transform Equation 1.31 by premultiplying by
(
BT + C

)
A−1 and using Equation 1.30 to

eliminate the velocity unknowns: (
BT + C

)
A−1Bp =

(
BT + C

)
A−1 f (1.34)

This equation is solved using a bi-conjugate gradient stabilized scheme.

1.5 Meshes and Geometry
There are two forms of meshes and geometries for CitcomS. By default CitcomS will produce a mesh within a regional
geometry that is bound by lines of constant latitude and longitude. There is an option to generate a global mesh of a
spherical shell.

For a regional mesh, CitcomS uses meshes that are regular, although considerable flexibility exists for grid refine-
ment in the regional models. There is an option for mesh refinement in which the mesh is refined as a function of
latitude, longitude, or radius. Such refinement is suitable for higher resolutions near boundary layers or within the
center of the map domain, but is incapable of increasing the resolution near a curvilinear feature, as a plate boundary,
unless that plate boundary is orientated north-south or east-west.

In regional meshes, theta (or x) is the colatitude measured from the north pole, fi (or y) is the east longitude, and z
is the radius. theta and fi are in units of radians. Figure 1.1 shows the organization of the mesh in a regional problem.
The numbering of the nodes is z-direction first, then x-direction, then y-direction. This numbering convention is used
for the input and output data.

Figure 1.1: Global Node Numbering. Left: Global node numbering starts at the base of arrow A (theta_min, fi_min,
radius_inner), and advances from 1 at the base to nodez at the tip. Upon reaching the tip, numbering continues from the
base of arrow B (nodez+1) to its tip (2 nodez), and so on for all nodes on the plane fi = fi_min. Right: After completing
each theta radius plane, the fi index is incremented and numbering commences from (theta_min, radius_inner) as on
the left.

22 CHAPTER 1. INTRODUCTION

For a global mesh, CitcomS is also capable of generating a mesh for an entire spherical shell in which elements in
map view are approximately equal in area. In the full spherical mode, CitcomS has 12 caps numbered 0 to 11 (Figure
1.2).

Figure 1.2: Topological connectivity of the 12 caps. N is the north pole and S is the south pole. The red line marks the
0 degree meridian.

The caps are approximately square in map view so that the edges of the square are oriented diagonally with respect
to latitude and longitude. The four corners of the domain are connected by great circles (Figure 1.3). One would
normally associate at least one processor with one cap. However, CitcomS can further decompose the domain such
that additional processors are used to divide caps uniformly along the two edges of the caps (Figure 1.3) as well as in
radius.

1.5. MESHES AND GEOMETRY 23

Figure 1.3: Orthographic projection of processors from a full CitcomS mesh in which there are 16 processors in map
view for each cap. The CitcomS cap is shown as distinct colors while the processor domains within the caps are
indicated by the intensity of the color. This example was produced for a run with 2 processors in radius such that the
total number of processors was 12×16×2=384.

24 CHAPTER 1. INTRODUCTION

Chapter 2

Installation and Getting Help

2.1 Introduction
CitcomS has been tested on Linux, Mac OS X, Sun Solaris and several NSF TeraGrid platforms. You should have no
trouble installing CitcomS on most Unix-like systems.

Most users will install CitcomS from the released source package. The following sections will lead you through
the installation process. Advanced users and software developers may be interested in downloading the latest CitcomS
source code directly from the CIG source code repository, instead of using the prepared source package; see Section
2.9 later in this chapter.

2.2 Getting Help
For help, send e-mail to the CIG Mantle Convection Mailing List (cig-mc@geodynamics.org). You can sub-
scribe to the Mailing List and view archived discussion at the Geodynamics Mail Lists web page (geodynamics.
org/cig/lists).

2.3 System Requirements
Installation of CitcomS requires the following:

• A C compiler

• An MPI library

You can install all the dependencies in one command on most Linux machines. On Debian, Ubuntu or similar distri-
butions, use this command (as root):

$ apt-get install build-essential python-dev \
openmpi-dev openmpi-bin

On Red Hat, Fedora, CentOS, OpenSuSE or similar distributions, use this command (as root):

$ yum install make automake gcc gcc-c++ kernel-devel \
python python-devel openmpi openmpi-libs openmpi-devel

On Mac OS X, Python is installed by default. You will need to install a C compiler and MPI library (see sections
below).

MPI installations are typically configured for a particular compiler, and provide a special wrapper command to
invoke the right compiler. Therefore, the choice of MPI implementation often determines which C compiler to use.

25

cig-mc@geodynamics.org
geodynamics.org/cig/lists
geodynamics.org/cig/lists

26 CHAPTER 2. INSTALLATION AND GETTING HELP

2.3.1 C Compiler
On Unix or Linux systems, there is a high likelihood that a usable C compiler is already installed. To check, type cc
at the shell prompt:

$ cc
cc: no input files
$

On Linux, if the cc command is not found, install GCC using the package manager for your distribution.
The Mac OS X version of GCC is included in a software development suite called Xcode. Xcode is available as a

free download at the Apple Developer Connection (developer.apple.com).

Warning: If you are using an Intel compiler on an Itanium CPU, do not use the -O3 optimization flag as
reports indicate that this optimization level will generate incorrect codes. For any compiler, you should
always be careful about the correctness of the compiled codes when using an -O3 or higher optimization
level.

2.3.2 MPI Library
CitcomS requires a library which implements the MPI standard (either version 1 or 2). Several free, open-source
implementations of MPI are available.

A popular choice is MPICH (www-unix.mcs.anl.gov/mpi/mpich). Other choices include LAM/MPI
(www.lam-mpi.org) and Open MPI (www.open-mpi.org). Installing MPI from source involves walking
through the standard GNU build procedure (configure && make && make install) while logged in as
root.

Linux users may have a prebuilt MPI package available for their distribution. On Mac OS X, the Fink package man-
ager offers a prepackaged version of LAM/MPI (www.lam-mpi.org); so if you have Fink (fink.sourceforge.
net) installed, simply enter the following command from a Terminal window to install LAM/MPI:

$ fink install lammpi lammpi-dev

2.3.2.1 MPI C Compiler Command

Once you have an MPI library installed, make sure its C complier command is on your PATH. Unfortunately, the name
of this command varies from one MPI implementation to the next. The CitcomS configuration script searches for the
following MPI C command names:

mpicc hcc mpcc mpcc_r mpxlc cmpicc

2.4 Downloading and Unpacking Source
To obtain CitcomS, go to the Geodynamics Software Packages web page (geodynamics.org/cig/software/
citcoms), download the source archive and unpack it using the tar command:

$ tar xzf CitcomS-3.3.0.tar.gz

If you don’t have GNU Tar, try the following command instead:

$ gunzip -c CitcomS-3.3.0.tar.gz | tar xf -

developer.apple.com
www-unix.mcs.anl.gov/mpi/mpich
www.lam-mpi.org
www.open-mpi.org
www.lam-mpi.org
fink.sourceforge.net
fink.sourceforge.net
geodynamics.org/cig/software/citcoms
geodynamics.org/cig/software/citcoms

2.5. INSTALLATION PROCEDURE 27

2.5 Installation Procedure
After unpacking the source, use the following procedure to install CitcomS:

1. Navigate (i.e., cd) to the directory containing the CitcomS source.

$ cd CitcomS-3.3.0

2. Type ./configure to configure the package for your system.

$./configure

3. Type make to build the package.

$ make

If you are content to run CitcomS from the build directory, then you are done. Upon successful completion, the make
command creates a script called citcoms in the bin subdirectory; this is the script you will use to run CitcomS. You
may wish to add the bin directory to your PATH.

For more details about configure, see Section 2.6 below.

2.5.1 Installing to a Secondary Location (Optional)
Optionally, after building CitcomS, you can install it in a secondary location using the make install command.
This is not necessary for using CitcomS and is not recommended for most situations. It is documented only for the
sake of completeness.

By default, CitcomS is configured to install under /usr/local, which is not writable by normal users. To install
as an ordinary user, give make install the prefix option, specifying a directory to which you have write access:

$ make install prefix=$HOME/cig

The above command will install CitcomS under $HOME/cig. Afterwards, you may wish to add PREFIX/bin
($HOME/cig/bin, in this example) to your PATH.

After running make install, you may (if desired) run make clean in the build directory to save disk space.
You are also free to delete the source/build directory altogether. (Note that make install installs the examples
under PREFIX/share/CitcomS/examples.)

2.6 Configuration
The configure script checks for various system features. As it runs, it prints messages informing you of which
features it is checking for. Upon successful completion, it generates a Makefile in each source directory of the
package. It also generates a config.h header file, which contains system-dependent definitions.

The configure script will attempt to guess the correct values of various installation parameters. In the event
that the default values used by configure are incorrect for your system, or configure is unable to guess the
value of a certain parameter, you may have to specify the correct value by hand.

Important: If the configure script fails, and you don’t know what went wrong, examine the log
file config.log. This file contains a detailed transcript of all the checks configure performed.
More importantly, it includes the error output (if any) from your compiler. When seeking help for
configure failures on the CIG Mantle Convection Mailing List (cig-mc@geodynamics.org),
please send config.log as an attachment.

Upon successful completion, configure will print a brief configuration summary.

cig-mc@geodynamics.org

28 CHAPTER 2. INSTALLATION AND GETTING HELP

2.6.1 Configure Usage
For a detailed list of configure variables and options, give configure the --help option:

$./configure --help

The following is a summary of the variables and options that are important when installing CitcomS.

2.6.2 Environment Variables
Environment variables may be specified as arguments to configure, e.g.,

$./configure CC=icc # use the Intel compiler

Variable Description
CC C compiler command. This is usually set to the name of an

MPI wrapper command, e.g.,
./configure \

CC=/opt/mpich-1.2.6/bin/mpicc
See Section 2.6.3 for details and examples.

CFLAGS C compiler flags. This can be set for optimization flags.
CPPFLAGS C preprocessor flags; e.g., -I<dir> if you have headers in a

nonstandard directory.
LDFLAGS Linker flags; e.g., -L<dir> if you have libraries in a

nonstandard directory.
LIBS Library flags; e.g., -l<lib> if additional library is needed

2.6.3 MPI Configuration
By default, configure will search for a C compiler using your PATH environment variable. It prefers MPI wrapper
commands (such as mpicc) to ordinary compiler commands (such as cc or gcc). You may specify the compiler
command name manually using the CC variable:

$./configure CC=/opt/mpich-1.2.6/bin/mpicc

The configure script will test for the presence of the MPI header (mpi.h) and an MPI library using the C compiler
command. If CC is set to an MPI wrapper command such as mpicc, and/or the MPI header and library files are
installed in a standard location (i.e., /usr/include and /usr/lib), these configure tests should succeed
without difficulty.

But if CC is set to an ordinary compiler command name (e.g., cc or gcc) and MPI is installed in a non-standard
location, you must manually specify CPPFLAGS and LDFLAGS, so that the compiler can find the MPI header files
and libraries.

2.6.3.1 Manually Specifying MPI include and lib Directories

$./configure \
CPPFLAGS="-I/opt/mpich-1.2.6/include" \
LDFLAGS="-L/opt/mpich-1.2.6/lib -lmpich"

2.7. HDF5 CONFIGURATION (OPTIONAL) 29

2.6.3.2 Manually Specifying MPI include and lib Directories and an Alternative Compiler

$./configure \
CC=icc \
CPPFLAGS="-I/opt/mpich-1.2.6/include" \
LDFLAGS="-L/opt/mpich-1.2.6/lib -lmpich"

Note that it may be necessary to specify the name of the MPI library itself in LDFLAGS using the -l compiler option.
If a library name is not given – or if the given option doesn’t work – configure will automatically try linking using
-lmpi and, if that fails, -lmpich.

2.7 HDF5 Configuration (Optional)
For writing its output in binary format, CitcomS requires parallel HDF5 (PHDF5). In turn, PHDF5 requires an MPI li-
brary with MPI-IO support and a parallel file system. If an existing installation of the PHDF5 library is not available on
your cluster, you can compile it from source by following the instructions in the file release_docs/INSTALL_parallel
under the HDF5 source tree. Under Debian Linux, you may simply install the libhdf5-mpich, libhdf5-mpich-dev
and hdf5-tools packages.

NOTE: Most post-processing and visualization scripts discussed in Chapter 5 only understand ASCII
output. An additional step to convert the HDF5 output files to ASCII files in necessary before using those
scripts.

By default, CitcomS will attempt to auto-detect your PHDF5 installation, and will disable HDF5 support if it is not
found. You may specify the location of your PHDF5 installation by setting the PHDF5_HOME environment variable
to the appropriate installation prefix.

$ export PHDF5_HOME=/opt/phdf5/1.6.5
$./configure --with-hdf5

2.7.1 Additional Tools
While the following software is not necessary for the normal operation of CitcomS, you may find it useful for accessing
CitcomS data in HDF5 files.

2.7.1.1 NumPy

NumPy is an extension to Python which adds support for multi-dimensional arrays for use in scientific computing. You
may download NumPy from the NumPy home page (numpy.scipy.org). To compile and install this extension,
download it and issue the following commands after extracting it:

$ cd numpy-1.0
$ python setup.py install --prefix=$HOME/cig

Alternatively, under Debian Linux you can install the python-numpy package. On Gentoo Linux, NumPy is avail-
able in the dev-python/numpy ebuild.

2.7.1.2 PyTables

PyTables is an extension to Python and can expose HDF5 array datasets as Python NumPy arrays. It is available at
PyTables (www.pytables.org).

To compile and install this extension, download the latest stable version and issue the following commands:

$ cd pytables-1.3.3
$ python setup.py install --prefix=$HOME/cig

To install on Debian Linux, you may use the python-tables package instead. On Gentoo Linux, it is available in
the dev-python/pytables ebuild.

numpy.scipy.org
www.pytables.org

30 CHAPTER 2. INSTALLATION AND GETTING HELP

2.7.1.3 HDFView

HDFView is a visual tool written in Java for browsing and editing HDF5 files. You may download it from the HDFView
home page (hdf.ncsa.uiuc.edu/hdf-java-html/hdfview).

2.7.1.4 OpenDXutils

In order to import HDF5 files into OpenDX, you need the OpenDXutils package from the Cactus project. Go to
the OpenDXutils package website (www.cactuscode.org/Visualization/openDX) and follow the instruc-
tions to download and install the package. Note that you will need to set both DXMODULES and DXMDF environment
variables before running OpenDX to load the package.

2.8 GGRD Configuration (Optional)
CitcomS can read data from files for initial temperature, boundary conditions, material control and others. By default,
these files are in ASCII format, and the data in the files must be ordered in the same way of the node ordering. As a
result, whenever the mesh is changed, these data files need to be regenerated to satisfy the ordering requirement. This
restriction can be lifted if using GRD data files. GRD files are binary files in NetCDF format (Network Common Data
Form). GRD files are widely used in GMT (Generic Mapping Tools) as well.

The GRD file support can be enabled at configuration time. It requires the installation of HC package (geodynamics.
org/cig/software/packages/mc/hc), a 1D global mantle circulation solver which can compute velocities,
tractions, and geoid for simple density distributions and plate velocities. To install HC, you will also need the GMT
and NetCDF packages (library and header files). See the README.TXT file in HC for instructions on installation.
After HC is installed, note the directory (for example: $HOME/cig/HC-1_0) of HC installation, and execute these
commands:

$ export HC_HOME=$HOME/cig/HC-1_0
$./configure --with-ggrd

You may need to set GMTHOME and NETCDFHOME environment variables if these packages is not installed in the
system directory.

2.9 Installing from the Software Repository
The CitcomS source code is available via Git at the Geodynamics website (geodynamics.org). This allows users
to view the revision history of the code and check out the most recent development version of the software.

NOTE: If you are content with the prepared source package, you may skip this section.

2.9.1 Tools You Will Need
In addition to the usual system requirements, you will need a handful of additional development tools installed in order
to work with the source from the CIG software repository.

First, you must have a Git client installed. To check, type git; it should return a usage message.

$ git
usage: git [-version] [-help] [-C <path>] [-c name=value]
[-exec-path[=<path>]] [-html-path] [-man-path] [-info-path]
[-p|-paginate|-no-pager] [-no-replace-objects] [-bare]
[-git-dir=<path>] [-work-tree=<path>] [-namespace=<name>] <command>
[<args>]

For more information on Git, we recommend one of the following websites:
http://github.com/ http://git-scm.com/ https://www.atlassian.com/git/
Second, you must have the GNU tools Autoconf, Automake, and Libtool installed. To check, enter the following

commands:

hdf.ncsa.uiuc.edu/hdf-java-html/hdfview
www.cactuscode.org/Visualization/openDX
geodynamics.org/cig/software/packages/mc/hc
geodynamics.org/cig/software/packages/mc/hc
geodynamics.org

2.9. INSTALLING FROM THE SOFTWARE REPOSITORY 31

$ autoconf --version
$ automake --version
$ libtoolize --version

For more information about these GNU tools, see the GNU website (www.gnu.org/software). The CitcomS
v3.3.0 source package was created with Autoconf 2.68, Automake 1.11.2, and Libtool 2.4.2.

2.9.2 Download Source from Subversion
To check out the latest version of the software, use the git clone command:

$ git clone https://github.com/geodynamics/citcoms

This will create the local directory citcoms (if it doesn’t already exist) and fill it with the latest CitcomS source from
the CIG software repository.

The CitcomS directory thus created is called a working copy. To merge the latest changes into an existing
working copy, use the git pull update command:

$ cd citcoms
$ git pull

This will preserve any local changes you have made to your working copy.

2.9.3 Generating the GNU Build System
Your working directory should now contain a fresh checkout of CitcomS:

$ ls
CitcomS
$

Before you can run configure or make, you must generate the necessary files using the GNU tools. The easiest
way to do this is to run autoreconf -i:

$ cd CitcomS
$ autoreconf -i
$./configure
$ make

The autoreconf tool runs Autoconf to generate the configure script from configure.ac. It also runs Au-
tomake to generate Makefile.in from Makefile.am in each source directory.

The configure script stores dependency information for source files in hidden subdirectories called .deps. If
source files are added, deleted, moved, or renamed – which may happen if you run svn update to merge the latest
changes – the make command may report errors for source files which no longer exist. If this happens, clean your
existing configuration using the make distclean command, and then re-run configure and make:

$ make distclean
$./configure
$ make

The make distclean command deletes all files generated by configure, including the Makefiles themselves!
Therefore, after running make distclean, you will not be able to run make again until you re-run configure.

www.gnu.org/software

32 CHAPTER 2. INSTALLATION AND GETTING HELP

Chapter 3

Running CitcomS

3.1 Using CitcomS
Upon the completion of a successful build, two binary executables, CitcomSRegional and CitcomSFull, are
always placed under the bin directory. These programs are compiled from pure C code and do not use Python or the
Pyre framework. Each program has the same usage:

$ mpirun [mpi_options] CitcomSRegional inputfile
$ mpirun [mpi_options] CitcomSFull inputfile

Two input file examples, one for a regional spherical model and one for a full spherical model, are provided in the
examples/Regional and examples/Full directories, respectively. The meaning of the input parameters is
described in Appendix A on page 79.

3.2 Changing Parameters
A configuration file should be used to set the input parameters for CitcomS. A configuration file is a plain text file
whose format is based on the Windows INI file. The format of a configuration file is as follows:

#CitcomS.component1.component2
this is a comment
property1=value1
property2=value2 ; this is another comment
property3=val1,val2,val3 ; this property is specified by a list of values

Upon termination of each run, all of the parameters are logged in a pidXXXXXX file, where XXXXXX is the process
id of the CitcomS application. Section names such as #CitcomS.component1.component2 are optional, but
are recommended for the purpose of organizing the contents of the configuration file

3.3 Uniprocessor Example
CitcomS runs similarly in full spherical or regional modes. For the purpose of this example, you will perform a test
run of the regional version on a workstation. The CitcomS source package contains an examples directory (the
make install command installs the examples under PREFIX/share/CitcomS/examples, where PREFIX
is the CitcomS installation directory). In this directory, you will find the example0 configuration file. Switch to
the examples directory and execute the following on the command line:

$ CitcomSRegional example0

or, equivalently,

$ mpirun -np 1 CitcomSRegional example0

33

34 CHAPTER 3. RUNNING CITCOMS

3.3.0.1 Example: Uniprocessor, example0

CitcomS
cpu_limits_in_seconds=360000000
minstep=5

CitcomS.controller
storage_spacing=1

CitcomS.solver
datafile=example0
rayleigh=100000

CitcomS.solver.mesher
fi_max=1
fi_min=0
nodex=17
nodey=17
nodez=9
theta_max=2.0708
theta_min=1.0708

CitcomS.solver.ic
num_perturbations=1
perturbl=1
perturblayer=5
perturbm=1
perturbmag=0.05

CitcomS.solver.visc
num_mat=4

3.4 Multiprocessor Example
In the examples directory, type the following at the command line:

$ mpirun -np 4 CitcomSRegional example1

3.4.0.2 Example: Multiprocessor, example1

CitcomS
cpu_limits_in_seconds=360000000
minstep=70

CitcomS.controller
storage_spacing=10

CitcomS.solver
datafile=example1
rayleigh=100000

CitcomS.solver.mesher
fi_max=1
fi_min=0

3.4. MULTIPROCESSOR EXAMPLE 35

nodex=17
nodey=17
nodez=9
nprocx=2
nprocy=2
theta_max=2.0708
theta_min=1.0708

CitcomS.solver.ic
num_perturbations=1
perturbl=1
perturblayer=5
perturbm=1
perturbmag=0.05

CitcomS.solver.visc
num_mat=4

This example has:

• 2 processors in colatitude (x-coordinate), specified by the nprocx=2 line in the configuration file

• 2 processors in longitude (y-direction), specified by the nprocy=2 line

• 1 processor in the radial (z-direction). The default value for the nprocx,nprocy,nprocz parameters is 1.
Hence the nprocz=1 line is omitted from the configuration file.

• The total number of processors used is given by nprocx×nprocy×nprocz. Hence this model uses 4 processors
in total.

• There are 17 nodes in x (theta) direction.

• There are 17 nodes in y (fi) direction.

• There are 9 nodes in z (radius_inner) direction.

The model will run for 70 time steps and the code will output the results every 10 time steps.
It is important to realize that within the example script (and in finite element method, FEM) the term “node” refers

to the mesh points defining the corners of the elements. In example1, this is indicated with:

nodex=17
nodey=17
nodez=9

These quantities refer to the total number of FEM nodes in a given direction for the complete problem, and for the
example it works out that within a given processor there will be 9 × 9 × 9 nodes. Note that in the x-direction (or y)
that for the entire problem there are 17 nodes and there is one node shared between two processors. This shared node
is duplicated in two adjacent processors.

Unfortunately, “nodes” sometimes also refer to the individual computers which make up a cluster or supercomputer
or the number of CPUs in a given computer. We run one “process” on each node. In the example script this is indicated
with:

nprocx=2
nprocy=2

36 CHAPTER 3. RUNNING CITCOMS

Figure 3.1: Computational Domain. Map view on the configuration of the top layer of the computational nodes and
the processors.

3.4.1 Output Formats
The possible output formats in CitcomS are ascii,ascii-gz,hdf5,vtk with ascii being the default. The
output format is specified by the output_format configuration parameter. The ASCII output can potentially take
a lot of disk space. CitcomS can write gzip compressed output directly. You can run the example script with:

output_format=ascii-gz

Be warned that the post-process scripts do not understand this output format yet.
Instead of writing many ASCII files, CitcomS can write its results into a single HDF5 (Hierarchical Data Format)

file per time step. These HDF5 files take less disk space than all the ASCII files combined and don’t require additional
post-processing to be visualized in OpenDX. In order to use this feature, you must compile CitcomS with the parallel
HDF5 library if you haven’t done so already (see Section 2.7 on page 29). You can run the example script with:

output_format=hdf5

The output files will be stored in ./ with a filename prefix example1 and a filename suffix h5. See Chapter 4 on
the next page for more information on how to work with the HDF5 output.

Chapter 4

Working with CitcomS HDF5 Files

4.1 Introduction
A typical run of CitcomS can create thousands if not millions of ASCII output files. This situation is inefficient since
it requires an extra post-processing step for assembling the results from each processor (see Chapter 5 on page 43).
Since the v2.1 release, CitcomS solves this problem when running the software on computers that have parallel file
systems by assembling a binary HDF5 file in parallel I/O mode. You can skip this chapter if you are not using the
HDF5 output format.

4.2 About HDF5
The Hierarchical Data Format (HDF) is a portable file format developed at the National Center for Supercomputing
Applications (NCSA) (hdf.ncsa.uiuc.edu/HDF5). It is designed for storing, retrieving, analyzing, visualiz-
ing, and converting scientific data. The current and most popular version is HDF5, which stores multi-dimensional
arrays together with ancillary data in a portable self-describing format. It uses a hierarchical structure that provides
application programmers with a host of options for organizing how data is stored in HDF5 files.

HDF5 files are organized in a hierarchical structure, similar to a Unix file system. Two types of primary objects,
groups and datasets, are stored in this structure. A group contains instances of zero or more groups or datasets, while
a dataset stores a multi-dimensional array of data elements. Both kinds of objects are accompanied by supporting
metadata.

A dataset is physically stored in two parts: a header and a data array. The header contains miscellaneous metadata
describing the dataset as well as information that is needed to interpret the array portion of the dataset. Essentially,
it includes the name, datatype, dataspace, and storage layout of the dataset. The name is a text string identifying the
dataset. The datatype describes the type of the data array elements. The dataspace defines the dimensionality of the
dataset, i.e., the size and shape of the multi-dimensional array. The dimensions of a dataset can be either fixed or
unlimited (extensible). The storage layout specifies how the data arrays are arranged in the file.

The data array contains the values of the array elements and can be either stored together in a contiguous file space
or split into smaller chunks stored at any allocated location. Chunks are defined as equally-sized multi-dimensional
subarrays (blocks) of the whole data array and each chunk is stored in a separate contiguous file space. Extensible
datasets whose dimensions can grow are required to be stored in chunks. One dimension is increased by allocating
new chunks at the end of the file to cover the extension.

HDF5 also supports access to portions (or selections) of a dataset by hyperslabs, which consist of a subarray or
strided subarray of the multi-dimensional dataset. The selection is performed in the file dataspace for the dataset.
HDF5 also supports parallel I/O. Parallel access is supported through MPI-IO. The file and datasets are collectively
created/opened by all participating processes. Each process accesses part of a dataset by defining its own file datas-
pace for that dataset. When accessing data, the data transfer property specifies whether each process will perform
independent I/O or all processes will perform collective I/O.

37

hdf.ncsa.uiuc.edu/HDF5

38 CHAPTER 4. WORKING WITH CITCOMS HDF5 FILES

4.3 Input Parameters
To enable HDF5 output in CitcomS, all you need to do is include the following section in your .cfg input file.

[CitcomS.solver.output]
output_format = hdf5

Alternatively, you can specify the option --solver.output.output_format=hdf5 on the command line.
The resulting filenames will start with the value of your specified datafile input parameter and end with .h5.

4.3.1 Optimizing Parallel I/O
There are several platform-dependent parameters used by the HDF5 library and the underlying MPI-IO routines to
optimize the performance of parallel I/O. The optimal values for these parameters may vary from file system to file
system. Ideally, before compiling CitcomS, the build procedure would configure these parameters based on your
platform, but this is not implemented currently.

In order to facilitate the process of gathering I/O performance data from a variety of parallel file systems such as
GPFS, PVFS, IBRIX FusionFS, etc., you can specify the following parameters in the CitcomS input file. You may use
these parameters to tune the performance of the parallel I/O on your system.

All values are assumed to be specified in bytes, unless otherwise indicated.

1. MPI file hints for collective buffering file access.

(a) cb_block_size: Target nodes will access data in chunks of this size.

(b) cb_buffer_size: Specifies the total buffer space on each target node. Set this parameter to a multiple
of cb_block_size.

2. HDF5 file access properties.

(a) sieve_buf_size: Maximum size of data sieve buffer.

(b) output_alignment: Alignment interval size in bytes.

(c) output_alignment_threshold: Allocation requests above this size will be aligned on a memory ad-
dress that is a multiple of output_alignment.

(d) cache_rdcc_nelmts: Maximum number of chunks that can be stored in the raw data chunk cache.

(e) cache_rdcc_nbytes: Size of raw data chunk cache in bytes.

For more details, you can refer to the following references:

• MPI-2: Extensions to the Message-Passing Interface, section 9.2.8 (www-unix.mcs.anl.gov/mpi/
mpi-standard/mpi-report-2.0/node182.htm) provides a list of MPI-IO reserved file hints, also
available in Section 7.2.8 of the MPI-2 reference book.

• HDF5 documentation (hdf.ncsa.uiuc.edu/HDF5/doc/UG/08_TheFile.html), Chapter 2, Sec-
tion 7.3, contains a list of HDF5 file access properties.

• HDF5 User’s Guide: Data Caching (hdf.ncsa.uiuc.edu/HDF5/doc/Caching.html) offers a short
explanation of raw data chunk caching.

You should also refer to the documentation for your particular parallel file system and check if there are any other MPI
or HDF5 hints that could improve your parallel I/O performance.

Finally, here is an example section that would appear in a typical CitcomS input file:

www-unix.mcs.anl.gov/mpi/mpi-standard/mpi-report-2.0/node182.htm
www-unix.mcs.anl.gov/mpi/mpi-standard/mpi-report-2.0/node182.htm
hdf.ncsa.uiuc.edu/HDF5/doc/UG/08_TheFile.html
hdf.ncsa.uiuc.edu/HDF5/doc/Caching.html

4.4. DATA LAYOUT 39

[CitcomS.solver.output]
cb_block_size = 1048576 # 1 MiB
cb_buffer_size = 4194304 # 4 MiB
sieve_buf_size = 1048576 # 1 MiB
output_alignment = 262144 # 256 KiB
output_alignment_threshold = 524288 # 512 KiB
cache_rdcc_nelmts = 521
cache_rdcc_nbytes = 1048576

4.4 Data Layout
Time independent data (e.g., node coordinates, grid connectivity) are saved in a file (for example, test-case.h5) at
the first output stage. Subsequently, each output stage will save time dependent data (e.g., velocity, and temperature)
in a separate file (for example, test-case.100.h5 contains data of time step 100). Most of the output data from
CitcomS is specified at the nodes of a logically Cartesian grid and is therefore well represented by multi-dimensional
arrays. A cap dimension is defined for addressing each of the CitcomS caps, followed by three spatial indices (i, j, k)
in the case of 3D data, two spatial indices (i, j) in the case of 2D surface data, or one spatial index (k) in the case
of 1D radial data. An additional dimension is provided for storing the components of vector and tensor data. These
data arrays are stored in different groups. Each group has a descriptive name. In addition, there is an /input group
archiving the input parameters of the model. Two sample .h5 files are provided in visual/samples/ directory.

Dataset Shape
/input N/A
/coord (caps, nodex, nodey, nodez, 3)
/connectivity (cap_elements, 8)

Table 4.1: Layout of the time-independent data file

Dataset Shape
/velocity (caps, nodex, nodey, nodez, 3)
/temperature (caps, nodex, nodey, nodez)
/viscosity (caps, nodex, nodey, nodez)
/pressure (caps, nodex, nodey, nodez)
/stress (caps, nodex, nodey, nodez, 6)
/geoid (8) See Section C.6.9 on page 95 for details
/surf/velocity (caps, nodex, nodey, 2)
/surf/heatflux (caps, nodex, nodey)
/surf/topography (caps, nodex, nodey)
/botm/velocity (caps, nodex, nodey, 2)
/botm/heatflux (caps, nodex, nodey)
/botm/topography (caps, nodex, nodey)
/horiz_avg/temperature (caps, nodez)
/horiz_avg/velocity_xy (caps, nodez)
/horiz_avg/velocity_z (caps, nodez)

Table 4.2: Layout of the time-dependent data file

40 CHAPTER 4. WORKING WITH CITCOMS HDF5 FILES

4.5 Accessing Data
As previously indicated, HDF5 is a self-describing binary file format. As such we can use a variety of tools to inspect
the structure of an HDF5 file, as well as for retrieving data in any order.

4.5.1 Inspecting Structures
To quickly inspect the structure of an HDF5 file, you can use the command h5ls which is included with the HDF5
software:

$ h5ls -r file.h5

4.5.2 Converting to ASCII Files
You can convert the HDF5 files to the ASCII combined capfiles described in Appendix C.6 for specific time steps by
using the command included in CitcomS:

$ h5tocap modelname step1 [step2 [...]]

You can also convert the HDF5 files to the velo files described in Appendix C.6.2 on page 94 for restart purposes by
using the command included in CitcomS:

$ h5tovelo modelname step

4.5.3 Accessing Data in Python
The small Python script h5tocap.py provides a good example of using the PyTables extension module to access the
data contained in the CitcomS HDF5 files. Using PyTables, datasets can be retrieved from disk as NumPy arrays. The
retrieval avoids unnecessary copying of data by using hyperslabs, which take advantage of Python’s powerful array
slice-indexing.

For example, obtaining the node coordinates, temperature, and topography values over the entire surface of the
sphere for time step 100 can be done easily with the following code snippet:

import tables

h5file = tables.openFile(’samples/cookbook1.h5’, ’r’)
surface_coords = h5file.root.coord[0:12,:,:,-1,:]

data100 = tables.openFile(’samples/cookbook1.100.h5’, ’r’)
surface_temperature = data100.root.temperature[0:12,:,:,-1]
surface_topography = data100.root.surf.topography[0:12,:,:]

In this case, the slice 0:12 refers to all caps explicitly, while the empty slice “:” refers to the entire extent of the
corresponding dimension. The values of -1 above refer to the last z-index, which corresponds to the location of the
surface nodes on each of the caps. Finally, note how both HDF5 datasets and groups are conveniently accessible as
Python attributes on the PyTables file object.

For more details, refer to the documentation for PyTables (www.pytables.org) and NumPy (numpy.scipy.
org).

4.5.4 Accessing Data Using HDFView
NCSA HDFView is a visual tool for accessing HDF files. You can use it for viewing the internal file hierarchy in a
tree structure, creating new files, adding or deleting groups and datasets, and modifying existing datasets. HDFView is
capable of displaying 2D slices of multi-dimensional datasets, with navigation arrow buttons that enable you to range
over the entire extent of a third dimension. An example of using HDFView is found in Figure 4.1 which uses data
from Cookbook 1 in Section 6.2 on page 51.

www.pytables.org
numpy.scipy.org
numpy.scipy.org

4.5. ACCESSING DATA 41

Figure 4.1: A screenshot of HDFView. The left panel shows the hierarchy of the groups and datasets. The right panel
shows a 2D slice of a dataset. The bottom panel shows the metadata associated with the selected group or dataset.

42 CHAPTER 4. WORKING WITH CITCOMS HDF5 FILES

Chapter 5

Postprocessing and Graphics

5.1 Introduction
Once you have run CitcomS, you would have a series of output files (potentially spread throughout the file systems of
your Beowulf cluster or in a set of directories on your parallel file system). You now have to retrieve and combine the
data for the time step (or age) of interest. To visualize your results, it is recommended that you use the open-source
Open Visualization Data Explorer, better known as OpenDX. The software is available from the OpenDX website
(www.opendx.org). If you are using Linux, OpenDX is usually available as package dx or opendx in your
distribution. If you are using Mac OS X, OpenDX is available via Fink (fink.sourceforge.net). We provide
experimental scripts for a 3D visualization program called MayaVi2; see Section 5.7 on page 47. Scripts using GMT
commands to plot 2D cross sections of temperature field are also provided; see Section 5.8 on page 49.

5.2 Postprocessing on a Beowulf Cluster
Generally, the results from your CitcomS run will be distributed on disks attached to individual nodes of your Beowulf
cluster. The output files are written in each node under the directory that you specified as the datadir property in
the input file. To examine those files, log in to a node and change directories to the one you specified with a prefix.
For example, if you set datadir=/scratch/username and datafile=test-case in your input file, then
your output files will be written to /scratch/username and will have the prefix test-case.

If you select HDF5 for the output format, the output files will have a .h5 suffix. You won’t need to postprocess
the .h5 files; you can visualize the results using OpenDX. See Section 5.6 on page 46 for more details.

If you select compressed ASCII (ascii-gz) for the output format, there is no post-processing script for it. You
need to decompress and rename the output files before you can use the post-processing script described below.

If you select ASCII for the output format, you will have many output files. An example of a filename for the
velocity output is test-case.velo.2.10 where test-case is the model prefix, velo means that this is a
velocity data file, 2 corresponds to the processor number (i.e., it is output by the 2nd processor), and 10 corresponds
to the time step.

If your run used the time-dependent velocity boundary conditions (solver.param.file_vbcs=on), the log
file will also have a current age line that lists the time-step numbers and their corresponding times. To choose an
age to export for postprocessing, you have to determine which time step corresponds to the age that interests you by
looking at the log file.

When you execute a CitcomS run, your input parameters will be saved in a file pidxxxxx.cfg where xxxxx is
usually a five-digit number for the process ID. This pidfile contains most of the input parameters, which can be useful
for archiving and postprocessing.

The ASCII output files of CitcomS need to be postprocessed before you can perform the visualization. The script
autocombine.py can postprocess (retrieve and combine) CitcomS output; it will retrieve CitcomS data to the
current directory and combine the output into a few files.

Using autocombine.py, retrieve and combine data of time-step 10:

$ autocombine.py mpirun.nodes pid12345.cfg 10

43

www.opendx.org
fink.sourceforge.net

44 CHAPTER 5. POSTPROCESSING AND GRAPHICS

This reads the MPI machinefile (mpirun.nodes) and the CitcomS pidfile (pid12345.cfg), then calls other
scripts to do the actual job. The general usage for autocombine.py is:

$ autocombine.py [machinefile] [pidfile] \
[step1] [step2 or more ...]

If your Beowulf cluster uses ssh (rather than rsh) to access the computation nodes, you must manually edit visual/batchpaste.sh
and replace ‘rsh’ with ‘ssh’ in the script.

Once autocombine.py has run, you will have 2 files (or 24 files for the full spherical version of CitcomS)
formatted as follows:

test-case.cap00.10
test-case.cap00.10.general

The former file is the data file containing simulation results and is referred to as the “capfile”; its format can be found
in Appendix C. The latter file is the OpenDX header for the data.

If you have enabled some optional_output, and the optional fields are node-based (e.g, comp_nd, stress,
or pressure), these fields will be combined in separated files, with filenames:

test-case.opt00.10
test-case.opt00.10.general

The former file is the data file containing optional fields and is referred to as the “optfile.” Its format is column-based
ASCII data. The latter file is the OpenDX header for the data. The header file contains information on the ordering of
the optional fields.

5.3 Postprocessing in a Non-Cluster Environment
If you run CitcomS in a non-cluster environment or all of your data can be accessed from the local machine, you can
still use autocombine.py to combine the data. In this case, the machinefile is not needed and can be replaced
by localhost, such as:

$ autocombine.py localhost [pidfile] \
[step1] [step2 or more ...]

5.4 Using OpenDX for Regional Sphere Visualization
OpenDX modules designed for CitcomS can be found in the source directory called visual. The optional make
install command installs the OpenDX modules under PREFIX/share/CitcomS/visual (where PREFIX
defaults to /usr/local).

In this example, you will use visRegional.net to visualize the results of regional CitcomS.

1. Launch OpenDX by typing:

$ dx

You will see an OpenDX Data Explorer window.

2. Click Edit Visual Programs and select visRegional.net from the file selector.

3. You will see a Visual Program Editor window.

4. Select the import tab in the Visual Program Editor’s main window and double-click on the FileSelector block,
which will open a Control Panel window.

5. In the CitcomSImport filename input box, select the header file of your postprocessed data, e.g.,

5.4. USING OPENDX FOR REGIONAL SPHERE VISUALIZATION 45

samples/regtest.cap00.100.general

6. In the pull-down menu, select Execute . Execute on Change.

7. A new window will appear with the image of the model.

8. If you want to zoom, rotate, change projection, and otherwise manipulate the view of the model, experiment
with the menu Options . View Control.

Figure 5.1: Regional Model Visualized with OpenDX. A snapshot of an upwelling (blue isosurface) with a slice of the
temperature field (bisecting plane).

Additional options in the control panel window for the regional model include:

• CitcomSImport reduced can increase or reduce the resolution of the velocity vectors and grids. Reducing
resolution is often necessary for visualizing large dataset interactively. Note that the resolution of other fields
(e.g., temperature and viscosity) is not reduced.

• Core radius is the size of the orange sphere which represents the core-mantle boundary.

• Isosurface value is the temperature isosurfaces. You can change the values of the isosurfaces, including
adding additional isosurfaces or deleting existing ones.

• Slab cut dimension is the direction of the slab (an OpenDX term for cross-section).

• Slab cut position is the position of the slab.

You can change any of the parameters, visualization, or set-up by going back to the main window and clicking on each
tab. If you click on each block, you will be able to change the settings for that function.

46 CHAPTER 5. POSTPROCESSING AND GRAPHICS

5.5 Using OpenDX for Full Sphere Visualization
1. After launching OpenDX, you will see an OpenDX Data Explorer window.

2. Click Edit Visual Programs and select visFull.net from the file selector.

3. You will see a Visual Program Editor window.

4. Select the import tab in the Visual Program Editor’s main window and double-click on the FileSelector block,
which will open a Control Panel window.

5. In the Format String of CitcomSFullImport input box, select one of the 12 header files of your postprocessed
data, e.g.,

samples/fulltest.cap00.100.general

6. The results of a full spherical CitcomS consist of 12 cap files. In order to import the 12 cap files at the same
time, edit the filename with the cap number replaced by printf-styled format string %02d, e.g.,

samples/fulltest.cap%02d.100.general

7. In the pull-down menu, select Execute . Execute on Change.

8. A new window will appear with the image of the model.

9. If you want to zoom, rotate, change projection, and otherwise manipulate the view of the model, experiment
with the menu Options . View Control.

Additional options in the control panel window for the spherical model include:

• CitcomSFullImport reduced can increase or reduce the resolution of the velocity vectors and grids. Re-
ducing resolution is often necessary for visualizing large dataset interactively. Note that the resolution of other
fields (e.g., temperature and viscosity) is not reduced.

• Core radius is the size of the orange sphere which represents the core-mantle boundary.

• Isosurface value is the temperature isosurfaces. You can change the values of the isosurfaces, including
adding additional isosurfaces or deleting existing ones.

• Latitude of normal axis and Longitude of normal axis are the directions of the normal axis to the cross-
section plane.

5.6 Using OpenDX for HDF5 Visualization
If you use the HDF5 output format (solver.output.output_format=hdf5), you can directly visualize the
data without postprocessing. First, you need to install and set up the OpenDXutils package (see Section 2.7.1.4 on
page 30). Then, open either visRegional.net or visFull.net in OpenDX.

1. In the pull-down menu, select File . Load Macro, and select the file CitcomSImportHDF5.net to load it.

2. In the Tools panel of the main window, select the CitcomSImportHDF5 module in the Macros category
(highlighted in Figure 5.2).

3. Place the module in the work space and rewire the network as shown in Figure 5.2.

4. There are four input tabs in the CitcomSImportHDF5 module.

(a) The first tab (connected to the left FileSelector module) specifies the HDF5 file containing time-independent
information (e.g., samples/cookbook1.h5).

5.7. USING MAYAVI FOR VISUALIZATION 47

Figure 5.2: How to import CitcomS HDF5 data. The CitcomSImportHDF5 module is highlighted in the Tools panel.

(b) The second tab (connected to the right FileSelector module) specifies the HDF5 file containing time-
dependent information (e.g., samples/cookbook1.100.h5).

(c) The third tab (connected to the Integer module) specifies the resolution reduction factor.

(d) The fourth tab (unconnected, default to 0) specifies which cap(s) to import.

i. To visualize a regional model, leave this tab unchanged.
ii. To visualize a full spherical model, double-click this module and change the value of this tab to

{0,1,2,3,4,5,6,7,8,9,10,11}.
iii. You can also specify a subset of caps to visualize.

5. After the data are imported, the visualization can be manipulated as described in previous sections.

5.7 Using MayaVi for Visualization
This distribution also comes with scripts for visualizing CitcomS using MayaVi2. MayaVi2 is the successor of
MayaVi for 2D/3D scientific data visualization. It is an interactive program allowing elaborate plots of scientific
data. MayaVi2 relies on the Visualization Toolkit (VTK) and allows easy scripting in Python. To install MayaVi2, you
should follow the instructions on the MayaVi2 website (https://svn.enthought.com/enthought/wiki/

https://svn.enthought.com/enthought/wiki/GrabbingAndBuilding

48 CHAPTER 5. POSTPROCESSING AND GRAPHICS

GrabbingAndBuilding) and on the SciPy website (www.scipy.org/Cookbook/MayaVi/Installation).
Besides MayaVi2, before using the script you will need to install PyTables (see Section 2.7.1.2 on page 29) and
PyVTK; see PyVTK website (cens.ioc.ee/projects/pyvtk) for instructions.

The script acts as an extension module of MayaVi2. The installation of the script is still preliminary. You will
need to include PREFIX/share/CitcomS/visual/Mayavi2/citcoms_plugins/ in your PYTHONPATH
environment variable. You also need to create a directory called ~/.mayavi2 and copy into it the following:

PREFIX/share/CitcomS/visual/Mayavi2/mayavi_custom_ui.py

To run the script, type this command:

$ mayavi2_citcoms_display.py file.step.h5

This will launch MayaVi2 and load the data from file.step.h5. An example of using this script is found in Figure
5.3. You may adjust your visualization pipeline by adding any appropriate VTK filters and modules. For more details
about this process, refer to The Visualization Toolkit User’s Guide (ISBN 1-930934-13-0) or see the VTK website
(www.vtk.org).

Figure 5.3: Example MayaVi2 visualization of cookbook1.100.h5. Here we display the velocity field as vectors, as
well a slice of the temperature field. Note the visualization pipeline in the tree view on the left panel.

https://svn.enthought.com/enthought/wiki/GrabbingAndBuilding
https://svn.enthought.com/enthought/wiki/GrabbingAndBuilding
www.scipy.org/Cookbook/MayaVi/Installation
cens.ioc.ee/projects/pyvtk
www.vtk.org

5.8. USING GMT COMMANDS FOR VISUALIZATION 49

5.8 Using GMT Commands for Visualization
The Generic Mapping Tools (GMT) is a collection of command-line tools for manipulating geographic and Cartesian
data that produces PostScript (PS) or Encapsulated PostScript File (EPS) illustrations. GMT is widely used in the
geophysics community. Two scripts plot_layer.py and plot_annulus.py, which can plot the temperature
field in horizontal and radial cross sections, respectively, are provided. These scripts use GMT commands to generate
EPS images. GMT is very customizable. Users might wish to customize the scripts for their need.

The usage of plot_layer.py is:

$ plot_layer.py modelname caps step layer

The script will look for the capfile(s) modelname.cap00.step, if caps is 1, or modelname.cap00.step,
modelname.cap01.step, ... through modelname.cap11.step, if caps is 12. A slice of the capfile at the
specified radial layer is then plotted in Mercator projection, if caps is 1, or in Hammer-Aitoff projection, if caps is
12.

Figure 5.4: Temperature field generated by plot_layer.py. This image is the mid-layer (layer 5) of the sample
data visual/samples/regtest.cap00.100. The resolution of the image is poor because the data has only
9×9×9 nodes.

The usage of plot_annulus.py is:

$ plot_annulus.py modelname step

The script will ask you a few questions on how to specify the great circle path. There are three options: (1) a starting
point and an azimuth, (2) a starting point and another point on the great circle, and (3) a starting point and a rotation
pole. The great circle path is used to construct the radial cross section.

50 CHAPTER 5. POSTPROCESSING AND GRAPHICS

Figure 5.5: Temperature fields generated by plot_annulus.py. The top panel is the horizontal cross section at the
mid layer in Hammer-Aitoff projection. The thick line marks the surface track of the radial cross section. The bottom
panel is the radial cross section. The cross section starts at 0◦ latitude and 0◦ longitude and has an azimuth of 45◦.
The image is from the sample data visual/samples/fulltest.cap*.100. There is always a gap on the left
(starting point) of the cross section. Users familiar with GMT are welcome to contribute a fix to the script.

Chapter 6

Cookbooks

6.1 Introduction
These cookbook examples are meant to serve as a guide to some of the types of problems CitcomS can solve. Cook-
book examples range from regional to full spherical shell problems that address traditional mantle convection prob-
lems. These cookbook examples are distributed with the package under the examples directory. However, you
might need to edit these example scripts slightly to launch the job on your cluster (see Section 3.4 on page 34 for more
information).

Cookbooks 1 to 4 introduce the basic parameters and are suitable for all users. Cookbook 5 introduces time-
dependent velocity boundary conditions, reading in initial temperature field from files and tuning of the advection
solver. Cookbook 6 introduces the pseudo-free-surface formulation for studying short wavelength dynamics topog-
raphy. Cookbook 7 introduces thermo-chemical convection problem and tuning of the Conjugate Gradient velocity
solver. Cookbook 8 introduces compressible convection problem, checkpointing/restarting, geoid and tuning of the
Multigrid and Uzawa velocity solver.

6.2 Cookbook 1: Global Model

6.2.1 Problem
This example solves for thermal convection within a full spherical shell domain. The full spherical version of CitcomS
is designed to run on a cluster that decomposes the spherical shell into 12 equal “caps” and then distributes the
calculation for caps onto separate processors. To run CitcomS with the full solver parameter set, it is recommended
that you have a minimum of 12 processors available on your cluster.

Figure 6.1: Global Model “Caps.” Left (A): Three-dimensional perspective image showing seven of the 12 spherical
caps used in a full CitcomS run. Right (B): The temperature field at 1081 km depth from a Cookbook 1 run.

51

52 CHAPTER 6. COOKBOOKS

6.2.2 Solution
You will use cookbook1. The first set of parameters specifies that you are going to use the full spherical version of
the solver. The default is to use the regional spherical version, so this must be set.

solver=full

The second set of parameters specifies the number of time steps (100), how often full outputs of the computation are
created (25), and the prefix of output filenames (cookbook1).

steps=100
storage_spacing=25
datafile=cookbook1

The following parameters control the temperature field for the initial conditions. The last set of parameters includes the
number of perturbations to the initial temperature (1), the number of nodal lines of the perturbation in the longitudinal
direction, e.g., the spherical harmonic order (3), the number of nodal lines in the latitudinal direction, e.g., the spherical
harmonic degree (2), which layer the perturbation is on (5), and the amplitude of the perturbation (0.05). Note that
although the number of perturbations is assigned here as num_perturbations=1, that is actually the default value.

num_perturbations=1
perturbl=3
perturbm=2
perturblayer=5
perturbmag=0.05

This example is executed by typing

$mpirun -np 12 CitcomSFull cookbook1

6.2.2.1 Example: Global Model, cookbook1

CitcomS
cpu_limits_in_seconds=360000000
minstep=100
solver=full

CitcomS.controller
storage_spacing=25

CitcomS.solver
datafile=cookbook1
rayleigh=100000

CitcomS.solver.mesher
fi_max=1
fi_min=0
nodex=9
nodey=9
nodez=9
nproc_surf=12
theta_max=2.0708
theta_min=1.0708

CitcomS.solver.ic
num_perturbations=1

6.2. COOKBOOK 1: GLOBAL MODEL 53

perturbl=3
perturblayer=5
perturbm=2
perturbmag=0.05

CitcomS.solver.visc
num_mat=4

Once you have run the model, you can visualize the results using OpenDX, described in the previous chapter. When
you invoke “Edit Visual Program,” select visFull.net.

Figure 6.2: Cookbook 1: Global Model. This image, created by OpenDX, depicts a slice through a spherical model of
convection, with warmer colors indicating upwelling and the cooler colors showing downwelling.

6.2.3 Discussion
You have generated a simple example of the full CitcomS model, with minimal parameter alterations. With a default
Rayleigh number of 105 and perturbation on the initial temperature field which has a degree-3 and an order-2 pattern,
after 100 time steps, the convection pattern remains relatively steady.

54 CHAPTER 6. COOKBOOKS

6.3 Cookbook 2: Domain Size and Velocity Boundary Conditions

6.3.1 Problem
This example solves for thermal convection with velocity boundary conditions imposed on the top surface within a
given region of a sphere. This requires using the regional version of CitcomS.

6.3.2 Solution
You will use cookbook2. The parameters specify the number of time steps (60), the prefix of the output filenames
(cookbook2), and how often outputs will be created (30).

steps=60
storage_spacing=30
datafile=cookbook2

The solver.mesher facility has several properties involved in the generation of the computational mesh. Continue
to use the default values for the physical portion of the domain in which you are interested. However, try modifying the
layout of the mesh as shown. The parameters specify two processors per cap in the x- and y-direction, one processor
per cap in the z-direction (by default), 17 nodes per cap in the x- and y-direction, 9 nodes in the z-direction, and the
minimum/maximum extents in the colatitudal, longitudal, and radial (theta, fi, radius) directions. The unit for
theta and fi is radian.

nprocx=2
nprocy=2
nodex=17
nodey=17
nodez=9

theta_min=0.7854
theta_max=1.5708
fi_min=0.0
fi_max=0.7854
radius_inner=0.55
radius_outer=1.0

The following parameters allow you to impose a uniform velocity across the top surface. You have a velocity which
is purely in the colatitude direction with a non-dimensional velocity of 100 (see Equation 1.14 on page 19 for how to
dimensionalize it).

topvbc=1
topvbxval=100
topvbyval=0

In addition, the initial temperature field has a linear conductive profile. The amplitude of initial temperature perturba-
tion is set to zero using the following parameters.

num_perturbations=1
perturbmag=0.0

6.3.2.1 Example: Velocity Boundary Conditions, cookbook2

CitcomS
cpu_limits_in_seconds=360000000
minstep=60

6.3. COOKBOOK 2: DOMAIN SIZE AND VELOCITY BOUNDARY CONDITIONS 55

CitcomS.controller
storage_spacing=30 ; how often outputs are created

CitcomS.solver
datafile=cookbook2 ; prefix of output filenames
rayleigh=100000

Modify the layout of the mesh
CitcomS.solver.mesher
nodex=17
nodey=17
nodez=9
nprocx=2
nprocy=2

theta_max=1.5708
theta_min=0.7854
fi_max=0.7854
fi_min=0.0
radius_inner=0.55
radius_outer=1.0

Import a uniform velocity across the top surface.
CitcomS.solver.bc
topvbc=1
topvbxval=100
topvbyval=0

In addition, set the initial temperature perturbation to zero.
CitcomS.solver.ic
num_perturbations=1
perturbl=1
perturblayer=5
perturbm=1
perturbmag=0.0

CitcomS.solver.visc
num_mat=4

6.3.3 Discussion
Using OpenDX to visualize the results (Figure 6.3), this model allows you to create a plate-driven convection in which
there is a thermal upwelling on one wall, a thermal downwelling on another, and uniform horizontal velocity across
the top. The downwelling is not exactly subduction because the sidewalls have reflecting boundary conditions. This
means that there is a symmetrical downwelling in a vertical domain on the other side.

56 CHAPTER 6. COOKBOOKS

Figure 6.3: Cookbook 2: Velocity Boundary Conditions. This model, visualized with OpenDX, highlights a region of
the sphere and the heated upwellings (warm colors), downwellings (cool colors), and the velocities (yellow arrows).

6.4 Cookbook 3: Temperature-Dependent Viscosity

6.4.1 Problem
A common problem in geophysics is the exploration of natural convection in the presence of variable viscosity, in-
cluding temperature-dependent or stress-dependent viscosity.

6.4.2 Solution
You will use cookbook3. The parameters specify the number of time steps (200), how often outputs will be created
(25), the prefix of the output filenames (cookbook3), and the Rayleigh number (106).

steps=200
monitoringFrequency=25
datafile=cookbook3
rayleigh=1e6

The parameters specify whether the viscosity should be updated at every time step (on), the number of viscous layers
(4), the viscosity of »»»> python-removal each layer (1,1,1,1), whether the viscosity is temperature dependent (on),
the type of viscosity law to use (4), the activation energy of each layer (0.2,0.2,0.2,0.2), the temperature offset of each
layer (0,0,0,0), the activation volume of each layer (0,0,0,0), whether to apply the minimum cutoff (on), the value of
the minimum cutoff (1.0), whether to apply the maximum cutoff (on), and the value of the maximum cutoff (100.0).

VISC_UPDATE = on
num_mat = 4
visc0 = 1,1,1,1
TDEPV = on
rheol = 4
viscE = 0.2,0.2,0.2,0.2
viscT = 0,0,0,0
viscZ = 0,0,0,0

6.4. COOKBOOK 3: TEMPERATURE-DEPENDENT VISCOSITY 57

VMIN = on
visc_min = 1.0
VMAX = on
visc_max = 100.0 ======= VISC_UPDATE=on
num_mat=4
visc0=1,1,1,1
TDEPV=on
rheol=4
viscE=0.2,0.2,0.2,0.2
viscT=0,0,0,0
viscZ=0,0,0,0
VMIN=on
visc_min=1.0
VMAX=on
visc_max=100.0 »»»> python-removal

The range of the layers are determined by the following parameters: layer 1 extends from the top surface to a depth of
solver.const.z_lith (default to 0.014, or 90 km dimensionally); layer 2 is below layer 1 and extends to a depth
of solver.const.z_410 (default to 0.06435, or 410 km dimensionally); layer 3 is below layer 2 and extends to
a depth of solver.const.z_lmantle (default to 0.105, or 670 km dimensionally); layer 4 is below layer 3 and
extends to the bottom. These depth parameters also control the depth of various phase transitions.

There are several viscosity laws coded in the program, which can be selected by the rheol parameter. All
available viscosity laws can be found in Appendix A.1.11. For rheol=4, the temperature dependence of the viscosity
of each layer is determined by:

visc = visc0× exp
(
viscE + viscZ × (1− r)

T ∗ + viscT
− viscE + viscZ × (1− rinner)

1 + viscT

)
(6.1)

where T ∗ = min(max(T, 0), 1). This equation is non-dimensionalized. The last term on the right-hand side normal-
izes the viscosity such that visc = visc0 when T = 1 and r = rinner. Comparing Equation 6.1 with the dimensional
Arrhenius activation equation:

η = η0exp

(
Ea + PVa

RT

)
= η0exp

(
Ea + PVa

R∆T (T ′ + T ′0)

)
= η0exp

(
Ea + ρg (1− r)Va
R∆T (T ′ + T ′0)

)
= η0exp

(
Ea/R∆T + (1− r) ρgVa/R∆T

T ′ + T ′0

)
(6.2)

where Ea and Va are the activation energy and activation volume, P is the hydrostatic pressure, R is the universal gas
constant, and other symbols are as defined in Section 1.3, it is clear that

viscE =
Ea
R∆T

(6.3)

viscZ =
ρgVa
R∆T

(6.4)

viscT = T0 (6.5)

6.4.2.1 Example: Temperature-Dependent Viscosity, cookbook3

CitcomS
cpu_limits_in_seconds=360000000
minstep=200

CitcomS.controller
storage_spacing=25

58 CHAPTER 6. COOKBOOKS

CitcomS.solver
datafile=cookbook3
rayleigh=1e6

CitcomS.solver.mesher
fi_max=1
fi_min=0
nodex=17
nodey=17
nodez=9
nprocx=2
nprocy=2
theta_max=2.0708
theta_min=1.0708

CitcomS.solver.ic
num_perturbations=1
perturbl=1
perturblayer=5
perturbm=1
perturbmag=0.05

CitcomS.solver.visc
TDEPV=on
VISC_UPDATE=on
VMAX=on
VMIN=on
num_mat=4
rheol=4
visc0=1,1,1,1
viscE=0.2,0.2,0.2,0.2
viscT=0,0,0,0
viscZ=0,0,0,0
visc_max=100.0
visc_min=1.0

6.4. COOKBOOK 3: TEMPERATURE-DEPENDENT VISCOSITY 59

Figure 6.4: Cookbook 3: Temperature-Dependent Viscosity. This model, visualized with OpenDX, highlights a region
that features both the heated upwelling (warm colors) and the even distribution of the velocities (arrows).

60 CHAPTER 6. COOKBOOKS

6.5 Cookbook 4: Regionally Refined Meshes

6.5.1 Problem
Frequently for convection problems, particularly those with variable viscosity, there are features with strong gradients
in temperature or viscosity that can be better resolved with refined meshes. For example, for the problem just studied
in Cookbook 3, temperature-dependent viscosity, a higher resolution is required for a narrow hot upwelling while a
lower resolution is sufficient for the wider cold downwelling.

6.5.2 Solution
The parameter that controls whether a mesh is to be uniform or refined is coor. Set it to 1 (coor=1) in order to
read the uneven mesh point coordinates from an input file (specified by coor_file). The format of the coordinate
input file is described in Appendix B.2 on page 89.

coor=1
coor_file=coor.dat

The computational domain is bounded in colatitude between radian 1 and 2, in latitude between radian 0 and 1, and in
radius between 0.55 and 1, as determined by the content of coor_file.

6.5.2.1 Example: Regionally Refined Meshes, cookbook4

CitcomS
cpu_limits_in_seconds=360000000
minstep=250

CitcomS.controller
storage_spacing=50

CitcomS.solver
datafile=cookbook4
rayleigh=1e6

CitcomS.solver.mesher
coor=1
coor_file=coor.dat
fi_max=1
fi_min=0
nodex=33
nodey=17
nodez=17
nprocx=1
nprocy=1
nprocz=1
theta_max=2.0708
theta_min=1.0708

CitcomS.solver.ic
num_perturbations=1
perturbl=1
perturblayer=10
perturbm=0
perturbmag=0.05

6.5. COOKBOOK 4: REGIONALLY REFINED MESHES 61

CitcomS.solver.visc
TDEPV=on
VISC_UPDATE=on
VMAX=on
VMIN=on
num_mat=4
rheol=4
visc0=1,1,1,1
viscE=0.2,0.2,0.2,0.2
viscT=0,0,0,0
viscZ=0,0,0,0
visc_max=100.0
visc_min=1.0

Figure 6.5: Cookbook 4: Regionally Refined Mesher. This model shows the temperature (upwelling – warm colors,
downwelling – cool colors) and the uneven distribution of the velocities (yellow arrows). Note the refined mesh for
the left and bottom regions of the model (inset).

6.5.3 Discussion
The resulting model is like a 2D model, but extends in the longitudinal direction. To set up this type of model, the
initial temperature gradient was perturbed only in the longitudinal direction, by setting the parameters perturbl=1
and perturbm=0. The model results show a thin thermal upwelling on one wall and a wide thermal downwelling
on the opposite wall. Also, at the bottom of the model a thin layer of hot material can be shown. Note the higher
resolution in the narrow regions with hot material and the lower resolution for the wide thermal downwelling region.

62 CHAPTER 6. COOKBOOKS

6.6 Cookbook 5: Subduction Models with Trench Rollback

6.6.1 Problem
A common issue to address is the problem arising when the position of the oceanic trench is not constant in time
(trench rollback) for a subduction zone. In addition, the trench rollback speed may vary in time, which can be caused,
for example, by a rotation pole jump.

6.6.2 Solution
In order to introduce in a convection model a trench rollback you have to prepare the velocity files. The following
scenario is proposed for this cookbook: there are two plates centered along the equator, with two different Euler poles
(see Figure 6.6). Initially, both plates have Euler poles situated far apart, so the velocities are approximately constant
(about 5 cm/yr for the left plate and about 2 cm/yr for the right plate). After 30 Ma, a pole jump occurred for the right
slab only, so the Euler pole moved closer.

Since we impose a top velocity boundary in our model, the following parameters should be turned on:

CitcomS.solver.bc
topvbc=1

CitcomS.solver.param
file_vbcs=on

The following two lines specify the location of the velocity files and the starting age for the model:

start_age=55
vel_bound_file=./velocity/bvel.dat

Since the starting age is set to 55 Ma, there will be 57 velocity files, one for each Ma (vel.dat0, vel.dat1,
...vel.dat55, vel.dat56). The format of the velocity file is described in Appendix B.3 on page 90. Note
that the velocity file uses a unit of cm/yr.

When tic_method=-1 is set, the initial temperature field is read from setup files. The files have the same
naming scheme and format as the CitcomS velo output, as described in Appendix C.6.2 on page 94. The loca-
tion and prefix of the file is specified in datadir_old and datafile_old, and the time step of the velo file in
solition_cycles_init. In this example, a processor of MPI rank nwill read file ./ic/cookbook5.velo.n.0

CitcomS.solver
datadir_old=./ic
datafile_old=cookbook5

CitcomS.solver.ic
tic_method=-1
solution_cycles_init=0

The descending slab will cause some numerical instability in the temperature solver. To reduce the numerical insta-
bility, you will use a smaller time-step size (0.75 of the maximum time-step size for a stable solution). The change in
maximum temperature will also be monitored. If the maximum temperature increases too much (> 5%) between time
steps, the temperature solver will rerun with half time-step size.

CitcomS.solver.tsolver
finetunedt=0.75
monitor_max_T=on

6.6. COOKBOOK 5: SUBDUCTION MODELS WITH TRENCH ROLLBACK 63

Figure 6.6: Cookbook 5: Left (A): Initially, both plates have Euler poles (magenta and green dots) situated far apart
from the plate, so the velocities are approximately constant (about 5 cm/yr for the left plate and about 2 cm/yr for the
right plate). Right (B): After 30 Ma a pole jump occurred for the right slab only, so the Euler pole moved closer.

6.6.2.1 Example: Subduction Models with Trench Rollback, cookbook5

CitcomS
cpu_limits_in_seconds=360000000
minstep=1100

CitcomS.controller
storage_spacing=100

CitcomS.solver
datadir_old=./ic
datafile=cookbook5
datafile_old=cookbook5
rayleigh=4.07e+08

CitcomS.solver.mesher
coor=1
coor_file=./coor.dat
fi_max=1
fi_min=0
nodex=17
nodey=65
nodez=33
nprocx=1
nprocy=2
nprocz=1
theta_max=2.0708
theta_min=1.0708

CitcomS.solver.tsolver
finetunedt=0.75
monitor_max_T=on

CitcomS.solver.bc
topvbc=1

CitcomS.solver.ic
num_perturbations=1
perturbl=1

64 CHAPTER 6. COOKBOOKS

perturblayer=5
perturbm=1
perturbmag=0.05
solution_cycles_init=0
tic_method=-1

CitcomS.solver.param
file_vbcs=on
start_age=55
vel_bound_file=./velocity/bvel.dat

CitcomS.solver.visc
TDEPV=on
VMAX=on
VMIN=on
num_mat=4
visc0=100,0.003,1,2
viscE=24,24,24,24
viscT=0.182,0.182,0.182,0.182
visc_max=100.0
visc_min=0.01

Figure 6.7: Cookbook 5: The pole jump after 30 Ma produced a flat slab on one side (fore side) and a steep slab on
the other side (back side).

6.6.3 Discussion
The results for this problem are presented in Figure 6.7. Since the two Euler poles are kept fixed for the first 30 Ma,
the shape of the subducting slab will be the same along the trench. At 25 Ma, the Euler pole for the right plate jumps
toward the plate. Therefore, the velocity along the trench varies from about 1 cm/yr to about 2.5 cm/yr. This will
produce in time a flat slab at one side of the model, and a steep slab at the other side.

6.7. COOKBOOK 6: PSEUDO-FREE-SURFACE FORMULATION 65

6.7 Cookbook 6: Pseudo-Free-Surface Formulation

6.7.1 Problem
Free-slip boundary conditions are typically applied on the top surface of mantle convection models, and the dynamic
topography is obtained by assuming that the normal stress on the top surface is instantaneously compensated by the
deformed surface. This type of boundary condition works well for long-wavelength topography, but a free-surface
formulation becomes necessary in cases where intermediate to short wavelength topography is of interest or the litho-
sphere has a very high effective viscosity.

The basic algorithm [16, 17] consists of four steps.

1. On the nodes of the top surface, compute the topography increment by integrating normal velocity over time.

2. Calculate the normal traction on the top surface based on the accumulated topography up to the current time
step, and add it to the forcing term in Equation 1.31.

3. Update the velocity field with the changed forcing term.

4. If the velocity field has not converged yet, repeat steps 1 to 3.

6.7.2 Solution
To verify that the above algorithm works, you will run two different CitcomS models with each boundary condi-
tion (BC) (free-slip and pseudo-free-surface) and compare the topography computed accordingly. The scripts in
cookbook6.cfg include the following parameters.

• Domain size: 45◦× 45◦ × 1200 km

• Mesh size: 61 × 61 × 25 nodes with mesh refinement (coor=1)

• Boundary Conditions (BC): free-slip/free-surface for top; free-slip for all the other surfaces

• Initial Conditions (IC): spherical hot blob with diameter of 1
4 of the radial dimension placed at the center of the

domain

The pseudo-free-surface boundary condition is enabled by:

CitcomS.solver.bc
topvbc=2
pseudo_free_surf=on

The time step size is fixed to 7.77×10−10 (about 1000 yrs), instead of determined dynamically by the velocity solution.

CitcomS.solver.tsolver
fixed_timestep=7.77e-10

6.7.3 Discussion
The plots of the topography profile are consistent with results described in [16]. In the graphs in Figure 6.8, the solid
lines indicate free-slip and the dashed lines indicate free-surface.

66 CHAPTER 6. COOKBOOKS

Figure 6.8: Cookbook 6: Graphs of topography profiles.

6.8. COOKBOOK 7: THERMO-CHEMICAL CONVECTION 67

6.8 Cookbook 7: Thermo-Chemical Convection

6.8.1 Problem
This example solves for thermo-chemical convection within a full spherical shell domain. Composition heterogeneity
exists in the Earth mantle. The density anomalies due to the composition heterogeneity, as well as due to the thermal
heterogeneity, drive the convection flow.

6.8.2 Solution
You will use cookbook7. Most of the parameters you have encountered in previous cookbooks. The initial condition
is the same as in Cookbook 1, and the viscosity law is the same as in Cookbook 3.

A large number of ASCII files will be output. In order to keep the current directory tidy, the output files can be put
in a subdirectory output/ by specifying

datadir=output

Since you are interested in the composition field, the compostion output should be enabled and some output files
disabled:

output_optional=tracer,comp_nd

The most important parameters are in the CitcomS.solver.tracer section. Turn on the tracer module:

tracer=1

The number of tracers and their initial location must be set. Here, you specify tracer_ic_method=0. The tracers
will be generated pseudo-randomly, with a total number equal to

tracers_per_element×(total number of finite elements).

If tracer_ic_method=1, all processors will read the location (and flavors; see next paragraph) of the tracers from
the same file specified by tracer_file. If tracer_ic_method=2, each processor will read the location (and
flavors; see next paragraph) of the tracers from the file specified by datafile_old (in the CitcomS.solver
section) and solution_cycles_init (in the CitcomS.solver.ic section).

tracer_ic_method=0
tracers_per_element=20
tracer_file=tracer.dat

Each tracer can have a “flavor” attached to it. The meaning of the flavor depends on the application. Here, the flavor
indicates the chemical species of the tracer. There are two flavors of tracers (tracer_flavors=2). A tracer of
flavor 0 is of the “normal,” or ambient, chemical composition, while a tracer of flavor 1 is of the “anomalous” chemical
composition. Because the tracers are automatically generated, you need to specify how to assign the flavor to each
tracer. If ic_method_for_flavors=0, tracers above z_interface are assigned to flavor 0, and tracers below
z_interface to flavor 1.

tracer_flavors=2
ic_method_for_flavors=0
z_interface=0.7

The thermo-chemical convection module is turned on by

chemical_buoyancy=1

The composition field is determined by the ratio method (buoy_type=1) [19]. The density anomaly of the anoma-
lous chemical composition is defined by B = ∆ρch/ (ρ0α0∆T), the buoyancy ratio.

68 CHAPTER 6. COOKBOOKS

buoy_type=1
buoyancy_ratio=0.5

The code keeps track of the sum of the bulk composition. In a perfect world, the sum of the bulk composition would
not change with time. But due to numerical issues, the sum of the bulk composition tends to decrease with time.
If tracer_ic_method=2, the code will read in the location of the tracers, as well as the initial sum of the bulk
composition, from the previous run.

The regular grid is an auxiliary grid that helps locate the tracers [18]. The optimal grid spacing of the regular grid
depends on the size of the CitcomS mesh. A general rule of thumb is that the grid spacing of the regular grid should
be less than 18/(nodex× nprocx). These parameters are used only in the full spherical version.

regular_grid_deltheta=1.0
regular_grid_delphi=1.0

If you encounter any error, look at the end of the tracer log files (cookbook7.tracer_log.*) for error messages.
You will use the conjugate gradient solver to solve the matrix equation Ax = b for x. The conjugate gradient solver

is more efficient than the multigrid solver (Solver=multigrid) for small problems (e.g., less than 17×17×17
nodes per processor). The desired accuracy and maximum iterations are set by accuracy and vlowstep. For
the Uzawa algorithm, the maximum iterations are set by piterations. Both vlowstep and piterations
should be large integers, but you can experiment with a larger value for accuracy to speed up the computation.

Solver=cgrad
accuracy=1e-03
vlowstep=1000
piterations=1000

6.8.2.1 Example: Thermo-Chemical Convection, cookbook7

CitcomS
cpu_limits_in_seconds=360000000
minstep=15
solver=full

CitcomS.controller
storage_spacing=5

CitcomS.solver
datadir=output
datafile=cookbook7
rayleigh=1e7

CitcomS.solver.mesher
fi_max=1
fi_min=0
nodex=9
nodey=9
nodez=9
nproc_surf=12
theta_max=2.0708
theta_min=1.0708

CitcomS.solver.vsolver
Solver=cgrad
accuracy=1e-04
piterations=1000

6.8. COOKBOOK 7: THERMO-CHEMICAL CONVECTION 69

vlowstep=1000

CitcomS.solver.ic
num_perturbations=1
perturbl=3
perturblayer=5
perturbm=2
perturbmag=0.05

CitcomS.solver.output
output_optional=tracer,comp_nd

CitcomS.solver.tracer

CitcomS.solver.visc
TDEPV=on
VISC_UPDATE=on
VMAX=on
VMIN=on
num_mat=4
rheol=4
visc0=1,1,1,1
viscE=0.2,0.2,0.2,0.2
viscT=0,0,0,0
viscZ=0,0,0,0
visc_max=100.0
visc_min=1.0

Figure 6.9: Cookbook 7: The composition and velocity field at the 15th step. The arrows are the velocity vectors. The
composition field is shown in an isosurface of 0.7 and in a cross section.

6.8.3 Discussion
When the model is running, it will output the progress of the run to the screen. This line has information about the
grid:

70 CHAPTER 6. COOKBOOKS

Problem has 9 x 9 x 9 nodes per cap, 6930 nodes and 6144 elements in total

The following lines give the radial coordinate and reference density of each nodes and their viscosity layer:

nz radius depth rho layer
1 0.550000 0.450000 1.000000e+00 4
2 0.606250 0.393750 1.000000e+00 4
3 0.662500 0.337500 1.000000e+00 4
4 0.718750 0.281250 1.000000e+00 4
5 0.775000 0.225000 1.000000e+00 4
6 0.831250 0.168750 1.000000e+00 4
7 0.887500 0.112500 1.000000e+00 4
8 0.943750 0.056250 1.000000e+00 2
9 1.000000 0.000000 1.000000e+00 1

This line gives the perturbation parameters used to construct the initial temperature:

Initial temperature perturbation: layer=5 mag=0.05 l=3 m=2

This line gives the magnitude the right-hand side vector in Equation 1.31:

Momentum equation force 2.207120371e+03

The following lines give the convergence progress of the Stokes solver, where v is the volume averaged norm of
velocity, p is the volume averaged norm of pressure, div/v is the volume averaged norm of ∇ · (ρ̄v) divided by
v, dv/v is the volume averaged norm of velocity change divided by v, and dp/p is the volume averaged norm of
pressure change divided by p. The convergence of the Stokes solver is achieved if either (1) div/v is less than
accuracy or (2) both dv/v and dp/p are less than accuracy for two consecutive iterations. In this example, the
second condition is met.

(000) 7.0 s v=1.470010e+02 p=0.000000e+00 div/v=5.37e+00 dv/v=1.00e+00 dp/p=1.00e+00 step 0
...
(090) 151.3 s v=1.012752e+02 p=1.304499e+04 div/v=5.54e-04 dv/v=1.84e-05 dp/p=9.20e-05 step 0
(091) 151.8 s v=1.012752e+02 p=1.304512e+04 div/v=5.66e-04 dv/v=2.07e-05 dp/p=7.45e-05 step 0

This line gives the rotation angle and the angular coordinates of rotation pole of the removed net angular momentum:

Angular momentum: rot=9.917258e-02 tr=8.924735e+01 fr=1.083630e+02

These lines give the heat flux across the top and bottom surfaces:

surface heat flux= 2.227892
bottom heat flux= 2.216542

The surface heat flux Hsurf can be converted to the Nusselt number Nusurf by:

Nusurf = Hsurf × (router − rinner)
router
rinner

(6.6)

The results for this problem are presented in Figure 6.9. The buoyancy ratio in this model is too low to stabilize
the chemical layer. A few thermo-chemical plumes are rising from the lower mantle, especially the ones at the 4, 6,
9, 10, and 12 o’clock directions. The resolution of this model is fairly low. The composition isosurface is slightly
discontinuous across the cap boundary. A model of higher resolution will not have this kind of artifact.

6.9. COOKBOOK 8: COMPRESSIBLE STEADY-STATE CONVECTION 71

6.9 Cookbook 8: Compressible Steady-State Convection

6.9.1 Problem
This example is a benchmark problem for compressible thermal convection. The Stokes solver in CitcomS has been
benchmarked and validated against a semi-analytical solution. However, no analytical solution exists for the bench-
mark on the energy equation solver, which is nonlinear. The steady-state solution is usually used for the comparison
with other numerical solutions.

6.9.2 Solution
This cookbook example will run for 10,000 time steps to reach steady state. It will use 12 processors and take 1 to
2 days to finish on a modern computer. At every 1,000th time-step interval, a checkpoint for the internal state of the
solver is saved.

checkpointFrequency=1000

If the solver is interrupted before finishing the computation, one can resume the computation from the checkpointed
state. To shorten the computation time, a checkpoint at the 9,000th time step is provided in the examples/Cookbook8/
directory. To restart the computation from this checkpoint, set these parameters:

restart=on
solution_cycles_init=9000

If you restart from the checkpoint, the computation will resume from the 9,000th time-step. Note that the coord files
are only output at the 0th time-step, so you will need to run the model without restarting for one time-step to get the
coord files.

A compressible convection model has four dimensionless numbers: the Rayleigh number, the dissipation number,
the Gruneisen parameter γ = α0KS0/ρ0cP0, and the non-dimensionalized absolute surface temperature, which are
defined in Section 1.3. The Rayleigh number of CitcomS is scaled by the radius of the Earth. If scaled to the thickness
of the mantle, the effective Rayleigh number is 7 × 103 (= 7.68175583 × 104 × (router − rinner)

3). Similarily,
the effective dissipation number is 0.275 (= 0.5 × (router − rinner)). Under these non-dimensional numbers, the
convection is of low vigor and low compressibility.

rayleigh=7.68175583e4
dissipation_number=0.5
gruneisen=1.25
surfaceT=0.1

Since we are going to use the multigrid solver, the grid size is specified by:

nodex=33
nodey=33
nodez=33
levels=5

The additional parameter levels specifies the nested levels of multigrid units and is subjected to the following
constraint:

nodex = 1 + nprocx×mgunitx× 2levels−1 (6.7)

where mgunitx, which must be an integer, is an input parameter.
If reference_state=1, then constant gravity, heat capacity, thermal expansivity, and ρr = exp

(
Di
γ (1− r)

)
are used as the reference state. If reference_state=0, the reference state is read from a file refstate_file.
See Appendix A for the file format.

reference_state=1
refstate_file=ref.dat

72 CHAPTER 6. COOKBOOKS

We are interested in the geoid, dynamic topography, and heat flux. The dynamic topography and heat flux are computed
on the surface grids. The geoid is computed in the spherical harmonics, with a maximal degree of 20.

output_optional=geoid,surf,botm
output_ll_max=20

The initial temperature is a conductive profile with a single spherical harmonic perturbation. The perturbation is
located at mid-depth and is defined as:

mag × sin

(
(r − rin)π

rout − rin

)
(sin(mφ) + cos(mφ))Plm(cos θ)

tic_method=3
num_perturbations=1
perturbl=3
perturbm=2
perturblayer=17
perturbmag=0.01

You will need the output of dynamic topography and the geoid. The dynamics topography will be computed by the
Consistent Boundary Flux (CBF) method, and the effect of self-gravitation is included in the geoid. The maximum
spherical harmonics degree for the geoid is 20.

output_optional=geoid,surf,botm
use_cbf_topo=on
self_gravitation=on
output_ll_max=20

Various parameters tune the performance of the solver. The maximum size of each time step is determined dynamically
by the Courant criterion. To enhance the stability of the energy equation solver, you will only use three quarters of the
maximum Courant time-step size.

finetunedt=0.75

You will use the multigrid solver to solve the matrix equation Ax = b for x. The multigrid solver is more efficient
than the conjugate gradient solver (Solver=cgrad) for larger problems (e.g., more than 17×17×17 nodes per
processor). Several parameters control the behavior of the multigrid solver: mg_cycle=1 for the V cycle and 2 for
the W cycle; down_heavy and up_heavy are the number of smoothing cycles for downward/upward smoothing;
vlowstep and vhighstep are the number of smoothing passes at lowest/highest levels; and max_mg_cycles is
the maximum number of multigrid cycles per solve. All these parameters should be small integers.

Solver=multigrid
mg_cycle=1
down_heavy=2
up_heavy=2
vlowstep=20
vhighstep=2
max_mg_cycles=50

The following parameter turn on the pre-conditioner for the matrix equation solver (either multigrid or conjugate
gradient).

precond=on

The stiffness matrix uses augmented Lagrangian formulation to improve the convergence for large viscosity variations
[3]. These parameters specify whether to enable the formulation and how much weight to use for the formulation.

6.9. COOKBOOK 8: COMPRESSIBLE STEADY-STATE CONVECTION 73

aug_lagr=on
aug_number=2.0e3

The discrete Stokes equations 1.30 and 1.31 are solved using the Uzawa algorithm, which iteratively updates the pres-
sure and velocity solutions. Three variations of the Uzawa algorithm are used in CitcomS, one for the incompressible
case, and the other two for the compressible case. One parameter, piterations, common to the three variations,
specifies the maximum number of iterations and the desired residual level for the continuity equation 1.30. Sometimes,
larger value of piterations is required for convergence if complicated velocity boundary conditions are used.

piterations=375

For the compressible case, two choices of the Uzawa algorithm are available. If uzawa=cg, the algorithm described
in Equation 1.33 is used. In this case, an additional parameter controls the maximum number of outer iterations.

uzawa=cg
compress_iter_maxstep=100

If uzawa=bicg, the algorithm described in Equation 1.34 is used, and no additional parameter is needed.
The overall accuracy of the velocity solver is controlled by a single parameter. The solver is converged if the

residuals of Equation 1.30 and 1.31 both are smaller than accuracy, or if the changes in the velocity and pressure
both are smaller than accuracy for the last two iterations.

accuracy=0.001

Finally, the net angular momentum of the velocity solution is removed. The net angular momentum and rigid body
rotation are unconstrained by the Stokes equations, if free-slip boundary conditions are used for the top and bottom
boundaries in a full spherical model. That is, you can add an arbitrary amount of rotation to the velocity solution, and
the resultant velocity is still a valid solution of the Stokes equations. Since no external torque is applied to the mantle
in free-slip boundary conditions, the angular momentum must be constant in time. Enforcing the angular momentum
to be zero by removing it from the velocity solution is often desirable.

remove_rigid_rotation=off
remove_angular_momentum=on

However, for models with imposed plate velocity, it is advisable to turn off both remove_rigid_rotation and
remove_angular_momentum.

6.9.2.1 Example: Compressible Steady-State Convection, cookbook8

CitcomS
cpu_limits_in_seconds=360000000
minstep=10000
solver=full

CitcomS.controller
checkpointFrequency=1000
storage_spacing=1000

CitcomS.solver
datadir=output
datadir_old=restart
datafile=cookbook8
datafile_old=cookbook8
dissipation_number=0.5
gruneisen=1.25
rayleigh=7.68175583e4

74 CHAPTER 6. COOKBOOKS

surfaceT=0.1

CitcomS.solver.mesher
coor=1
coor_file=coord.dat
fi_max=1
fi_min=0
levels=5
mgunitx=2
mgunity=2
mgunitz=2
nodex=33
nodey=33
nodez=33
nproc_surf=12
theta_max=2.0708
theta_min=1.0708

CitcomS.solver.tsolver
finetunedt=0.75

CitcomS.solver.vsolver
Solver=multigrid
accuracy=0.001
aug_lagr=on
aug_number=2.0e3
compress_iter_maxstep=100
down_heavy=2
max_mg_cycles=50
mg_cycle=1
piterations=375
precond=on
remove_angular_momentum=on
remove_rigid_rotation=off
up_heavy=2
uzawa=cg
vhighstep=2
vlowstep=20

CitcomS.solver.ic
num_perturbations=1
perturbl=3
perturblayer=17
perturbm=2
perturbmag=0.01
restart=off
solution_cycles_init=9000
tic_method=3

CitcomS.solver.output
output_ll_max=20
output_optional=geoid,surf,botm
self_gravitation=on
use_cbf_topo=on

6.9. COOKBOOK 8: COMPRESSIBLE STEADY-STATE CONVECTION 75

CitcomS.solver.param
reference_state=1
refstate_file=ref.dat

CitcomS.solver.visc
TDEPV=on
VISC_UPDATE=on
VMAX=on
VMIN=on
num_mat=4
rheol=1
visc0=1,1,1,1
viscE=2.99573,2.99573,2.99573,2.99573
viscT=0.5,0.5,0.5,0.5
visc_max=1e+06
visc_min=0.001
visc_smooth_method=1

6.9.3 Discussion
The results for this problem are presented in Figure 6.10. A tetrahedral symmetric pattern is developed for the con-
vection. The surface heat flux Hsurf at the steady state is 3.892, and the bottom heat flux Hbotm is 12.817. The heat
flux imbalance (Hbotmr

2
inner/Hsurfr

2
outer − 1) is -0.38%. The Nussult number, converted from the surface heat flux

by Equation 6.6, is 3.182. The total viscous heating is 7.68991, and the total adiabatic cooling is 7.71719. Under a
steady state, these two terms should be exactly balanced.

The geoid is output as spherical harmonic coefficients. A post-processing program is provided to project the geoid
coefficients to a regular (longitude, latitude) grid. To use a regular grid of 1◦ spacing, run this command:

$ visual/project_geoid cookbook8.geoid.0.10000 geoid.xyz 361 181

It will generate a file geoid.xyz. There are 3 columns in the file, which are (longitude, latitude, geoid). The geoid
is in a unit of meters. Several dimensional constants are required for the geoid computation. These constants have
sensible default values (in SI units) for the Earth. Note that the temperature drop from the core-mantle boundary to
the surface (∆T in Equation 1.16) is derived from these constants and the Rayleigh number.

radius=6.371e+06
density=3340
thermdiff=1e-06
gravacc=9.81
thermexp=3e-05
refvisc=1e+21
cp=1200
density_above=1030
density_below=6600

76 CHAPTER 6. COOKBOOKS

Figure 6.10: Cookbook 8: The steady state temperature field at the 10,000th time step. A tetrahedral symmetric
convection pattern is developed. Two temperature isosurfaces of 0.4 and 0.8 are shown.

Part III

Appendices

77

Appendix A

Input Parameters for CitcomS

A.1 Input Parameters Grouped by Functionality
This section explains the meaning of the input parameters for CitcomS. These parameters are grouped by their func-
tionality. Parameters are given with their default values.

A.1.1 Parameters that Control Input Files
reference_state=1

refstate_file="refstate.dat"

If reference_state is set to 1, a simple reference state of
ρr = exp ((1− r)Di/γ) is used, with constant gravity, thermal expansivity,
and heat capacity. If reference_state is set to 0, the reference state is
read from a file refstate_file.

mineral_physics_model=3 Using which mineral physics model to convert the seismic velocities.
file_vbcs=off

vel_bound_file="bvel.dat"

If file_vbcs is set to on, the top surface velocity boundary conditions are
read in from files which have location and name specified by
vel_bound_file. Requires setting topvbc=1 to take effect. If you wish
to have a uniform top surface velocity boundary condition or some simple
geometric pattern, then file_vbcs should be set to zero.

mat_control=off

mat_file="mat.dat"

If mat_control is set to on, then the time- and positional-dependent
viscosity factor is defined from the files specified by mat_file. These
parameters allow you to define the material group of each element (such as a
moving weak zone). Not working in this version.

lith_age=off

lith_age_file="age.dat"

lith_age_time=off

If lith_age is set to on, then the age of each surface nodes is read from the
files specified by lith_age_file. These parameters control the thermal
age of the top thermal boundary condition. If lith_age_time is on, the
files are time-dependent.

79

80 APPENDIX A. INPUT PARAMETERS FOR CITCOMS

A.1.2 Parameters that Control Output Files
output_format=ascii Choose the format and layout of the output files. Can be either ascii,

ascii-gz or hdf5. If ascii-gz is chosen, the code places gzipped files
into data_dir, and will put all time-step output into subdirectories of
data_dir. The same naming logic holds for reading old velo files.

output_optional="surf,

botm,tracer"

Choose additional output, including surf, botm, geoid, seismic,
stress, pressure, connectivity, horiz_avg, tracer,
heating, comp_el and comp_nd.

datadir="." Controls the location of output files.
datafile="regtest" Controls the prefix of output file names such as regtest.xxx. Cannot

contain the “/” character if output_format=ascii.
storage_spacing=10

(in non-Pyre version)
or
monitoringFrequency=100

(in Pyre version)

Controls the interval between output files. CitcomS dynamically determines
the size of the time step; this means that you might not get an output at the
exact time required, but you can always get close depending on how small
this number is. Do not make this number too small since outputs slow the
code down and you may end up with an unmanageable number of output
files.

checkpointFrequency=100 The time-step interval between checkpoint output, which can be used later to
resume the computation.

output_ll_max=20 This parameter controls the maximum degree of spherical harmonics
coefficients for geoid output.

self_gravitation=off Considering the effect the self gravitation on the geoid or not.
use_cbf_topo=off Using the Consistent Boundary Flux (CBF) method to compute the dynamic

topography or not.

A.1.3 Mesh and Processors Setup
nproc_surf=1 This specifies the number of spherical caps of the mesh; must be 1 for

regional spherical model and 12 for full spherical model.
nprocx=1

nprocy=1

nprocz=1

These specify the number of processors in each spherical cap.

For a full spherical model, nprocx must be equal to nprocy

nodex=9

nodey=9

nodez=9

These specify the number of FEM nodes in each spherical cap. These
parameters are not used in the C version if multigrid solver is used.

For a full spherical model, nodex must be equal to nodey
mgunitx=8

mgunity=8

mgunitz=8

levels=1

These specify the nested level of multigrid units. Used by multigrid solver
only. These parameters are not completely independent to each other. The
constraint of Equation 6.7 must be satisfied. These parameters are not used
in the C version if conjgrad solver is used.

For a full spherical model, mgunitx must be equal to mgunity

A.1. INPUT PARAMETERS GROUPED BY FUNCTIONALITY 81

A.1.4 Domain Size
theta_min=1.0708

theta_max=2.0708

fi_min=0

fi_max=1

These parameters specify the horizontal extent of the computational domain.
theta_min and theta_max are the colatitude measured in radians from
the north pole. fi_min and fi_max are the longitudes measured from the
prime meridian eastward in radians. Only in regional CitcomS.

radius_inner=0.55

radius_outer=1.0

These parameters specify the radial extent of the computational domain.
radius_inner and radius_outer are the inner and outer radii in
non-dimensional units. It is probably more convenient to normalize lengths
by the radius of the Earth. If you do this, then the Rayleigh number must be
calculated with the radius of the Earth, not the thickness of the mantle. The
core mantle boundary is close to having a non-dimensional radius of 0.55.

coor=0

coor_file="coor.dat"
coor_refine=0.1,0.15,0.1,0.2

If coor=0, there will be uniform mesh in the latitudinal, longitudinal, and
radial directions.
If coor=1, the coordinate is reading from the file specified by
coor_file. This is used to have a regular but uneven spacing between
elements.
If coor=2, there will be uniform mesh in the latitudinal and longitudinal
directions. The mesh in the radial direction is generated according to
coor_refine, which is a vector of 4 numbers. The 1st value of
coor_refine specifies the radius fraction of the bottom layer, the 2nd
value specifies the fraction of the nodes in the bottom layer, the 3rd value
specifies the top layer fraction, and the last value specifies the top layer node
fraction.

A.1.5 Restarting the Code
restart=off If restart is on, each processor will resume the computation from the

checkpoint files.
post_p=off Similar to restart, except that the model will then only run for 1 time

step, which can be useful to regenerate the flow field and calculate the
associated observables.

datadir_old="."

datafile_old="regtest"

solution_cycles_init=0

If restart is on, for example, processor #5 will read its initial conditions
from checkpoint file regtest.chkpt.5.0 in this case.

A.1.6 Run Length
minstep=1

maxtotstep=1000000

(only in pure C version)
or
steps=1

(only in Pyre version)

The maximum and minimum number of time steps for the model, including
the 0th time step.

cpu_limits_in_seconds=

360000000

Controls the termination of the code based on total wall clock time used.
Available only in pure C version.

A.1.7 Initial Conditions

tic_method=0 Which method to use to generate the initial temperature field.

82 APPENDIX A. INPUT PARAMETERS FOR CITCOMS

datadir_old="."

datafile_old="regtest"

solution_cycles_init=0

zero_elapsed_time=on

If tic_method=-1, the initial temperature is read from files. For example,
processor #5 will read its initial temperature from old velo file
regtest.velo.5.0 in this case. If zero_elapsed_time is on, the initial
time is set to zero. If it is off and tic_method=-1, the initial time is read
in from the old velo files. Note that this option has no effect when
restart=on.

num_perturbations=1

perturbmag=0.05

perturbl=1

perturbm=1

perturblayer=5

half_space_age=40

mantle_temp=1.0

blob_center=[-999,-999,-999]

blob_radius=0.063

blob_dT=0.18

If tic_method=0. The initial temperature is a linear temperature gradient
with perturbations at specific layers, where num_perturbations
specifies the number of perturbations, and perturblayer specifies the
layers to be perturbed, representing the number of the mesh node in radial
direction. There must be as many entries as num_perturbations in a
comma-separated list. The perturbation added to each layer is given by:

mag × cos(mφ)× Plm(cos θ)

for the full sphere, and by:

mag × cos(
(θ − θmin) lπ

θmax − θmin
)× cos(

(φ− φmin)mπ

φmax − φmin
)

for the regional sphere.
If tic_method=1, T is 1 everywhere, except a cold thermal boundary
layer at the top, whose temperature is determined by the half-space cooling
model and half_space_age (in million of years, Myrs).
If tic_method=2, T is mantle_temp everywhere, except for a warm
spherical blob and a cold thermal boundary layer at the top, whose
temperature is determined by the half-space cooling model and
half_space_age (in Myrs). The location of the blob is default to the
center of the computational domain.
If tic_method=3, the initial temperature is a conductive profile with
perturbations to all layers. The perturbation is given by:

mag × sin

(
(r − rin)π

rout − rin

)
(sin(mφ) + cos(mφ))Plm(cos θ)

for the full sphere, and by:

mag × sin

(
(r − rin)π

rout − rin

)
× cos(

(θ − θmin) lπ

θmax − θmin
)× cos(

(φ− φmin)mπ

φmax − φmin
)

for the regional sphere.
If tic_method=4, the initial temperature is read from grd files.
If tic_method=10, T is mantle_temp everywhere, except for a cold
thermal boundary layer at the top and perturbations at all layers, similar to
tic_method=3.
If tic_method=11, T is mantle_temp everywhere, except for a hot
thermal boundary layer at the bottom and perturbations at all layers, similar
to tic_method=3.
If tic_method=12, T is mantle_temp everywhere, except for a cold
thermal boundary layer, a hot thermal boundary layer at the bottom and
perturbations at all layers, similar to tic_method=3.
If tic_method=90, T is 0 everywhere, except for a single perturbation at
the middle layer. This initial temperature is good for comparison with
analytical solutions.

A.1. INPUT PARAMETERS GROUPED BY FUNCTIONALITY 83

A.1.8 Boundary Conditions
topvbc=0

topvbxval=0.0

topvbyval=0.0

Surface velocity boundary condition parameters. If topvbc is 0,
topvbxval and topvbyval specify the tangential surface stress (stress
BC). If topvbc is 1, topvbxval and topvbyval specify the tangential
surface velocity (velocity BC). The surface normal velocity is zero in these
two cases (impermeable BC).

botvbc=0

botvbxval=0.0

botvbyval=0.0

As above, but for bottom velocity boundary conditions.

side_sbcs=off Enable traction boundary condition for the sidewalls or not. Must be on for
coupled model.

pseudo_free_surf=off Enable pseudo free surface or not.
toptbc=1
toptbcval=0.0

Surface temperature boundary conditions. If toptbc is 0, toptbcval
specifies the surface heat flux (not working in this version). If toptbc is 1,
the toptbcval specifies the surface temperature.

bottbc=1

bottbcval=1.0

As above, but for bottom temperature boundary conditions.

temperature_bound_adj=off

depth_bound_adj=0.157

width_bound_adj=0.08727

lith_age_depth=0.0314

Additional parameters for temperature boundary conditions when
lith_age is on.

A.1.9 Non-Dimensional Numbers
rayleigh=1.0e+5 This specifies the Rayleigh number, which is one of the most important

parameters you may want to change.
dissipation_number=0.0 The dissipation number.
gruneisen=0.0 The Gruneisen parameter. When this parameter is 0, the code treats it as

infinity (i.e., incompressible case).
surfaceT=0.1 The non-dimensional value of surface temperature.
Q0=0.0 This specifies the internal heating number.

A.1.10 Depth Information
z_lith=0.014

z_410=0.06435

z_lmantle=0.105

z_cmb=0.439

These specify the non-dimensional depth of the Moho, 410km discontinuity,
660km discontinuity and D". These parameters are used to determine the
depth of viscosity layers and phase changes (see next two sections). The
names are only suggestive. You are free to refer z_lith to an arbitrary
depth, for example.

A.1.11 Viscosity

Viscosity=system This parameter must be set as indicated.
visc_smooth_method=3 This specifies which method to use to smooth viscosity projection for the

multigrid solver.
VISC_UPDATE=on If VISC_UPDATE is on, viscosity will be updated every time step.

Otherwise, viscosity will be time-independent.

84 APPENDIX A. INPUT PARAMETERS FOR CITCOMS

num_mat=4 This specifies the number of material layers. Material 1 is at depth between
0 and z_lith, material 2 between z_lith and z_410, material 3
between z_410 and z_lmantle, and material 4 between z_lmantle
and the bottom. If mat_control is on, then a multiplicative factor is
applied to the viscosity, as defined below.

visc0=1,1,1,1 The pre-exponent factor of layered viscosity structure (η0 in the equations
below). There must be as many entries as num_mat in a comma-separated
list.

TDEPV=off Enable temperature dependence or not.
rheol=3 When rheol=1, temperature-dependent viscosity is computed by

η = η0 × exp(Eη(Tη − T))

When rheol=2, temperature-dependent viscosity is computed by
η = η0 × exp(−T/Tη)
When rheol=3, temperature-dependent viscosity is computed by
η = η0 × exp(

Eη
T∗+Tη

− Eη
1+Tη

), where T ∗ = min(max(T, 0), 1).
When rheol=4, temperature-dependent viscosity is computed by
η = η0 × exp(

Eη+Zη(1−r)
T∗+Tη

)

When rheol=5, same as rheol=3, except the viscosity cut-off is applied
before mat_control.
When rheol=6, temperature-dependent viscosity is computed by
η = η0 × exp(Eη(Tη − T ∗) + Zη(1− r))

When rheol=7, temperature-dependent viscosity is computed by
η = η0 × exp(

Eη+Zη(1−r)
T+Tη

− Eη+Zη(1−rinner)
1+Tη

), where rinner is the inner radius
of the mesh.
When rheol=8, same as rheol=3, except viscosity reduction is applied
when the temperature exceeds the solidus.
When rheol=9, same as rheol=3, except using T , not T ∗.
When rheol=10, same as rheol=8, except using T , not T ∗.

viscE=1,1,1,1

viscT=1,1,1,1

viscZ=1,1,1,1

Parameters defining viscosity law (Eη , Tη , and Zη in the equations above,
respectively). There must be as many entries as num_mat in a
comma-separated list.

SDEPV=off Enable stress dependence (non-Newtonian) or not.
sdepv_expt=1,1,1,1

sdepv_misfit=0.001

If SDEPV is on, these specify the exponent in the viscosity law and the
criterion of convergence test. There must be as many entries as num_mat in
a comma-separated list.

PDEPV=off Pseudo-plastic rheology, implemented by adding a plastic viscosity
ηp =

σy
(2εII+10−7)+η0p

where the yield stress is defined as
σy = min (a+ b (1− z) , y) and εII is the second shear strain rate invariant
(all non-dimensional). The effective viscosity η′ is computed from η and ηp
as η′ =

ηpη
(η+ηp)

(pdevp_eff=on) or η′ = min (η, ηp) (pdepv_eff=off).
pdepv_a=1e20,1e20,1e20,1e20

pdepv_b=0,0,0,0

pdepv_y=1e20,1e20,1e20,1e20

Parameters for σy .

pdepv_eff=on Effective or minimum viscosity “plasticity” (see above).
pdepv_offset=0 Offset for plastic viscosity η0p.
CDEPV=off Compositionally dependent viscosity pre-factor (only for tracer=on). Will

assign two pre-multipliers for C = 0 and C = 1 and compute a geometric
mean for all elements depending on the nodal composition. Only works for
two flavors and assuming C varies between [0; 1].

cdepv_ff=1,1 Flavor-wise viscosity pre-factors for C = 0 and C = 1, respectively.
low_visc_channel=off

low_visc_wedge=off

Used in conjunction with tracers. The tracers define the upper boundary of
the subducted slab.

A.1. INPUT PARAMETERS GROUPED BY FUNCTIONALITY 85

lv_min_radius=0.9764

lv_max_radius=0.9921

lv_channel_thickness=0.0047

lv_reduction=0.5

If low_visc_channel or low_visc_wedge is on, this specifies the radial
extents of the low viscosity zones and the viscosity reduction factor,
respectively.

VMIN=off

visc_min=0.001

If VMIN is on, minimum viscosity is cut off at visc_min.

VMAX=off

visc_max=1000

If VMAX is on, maximum viscosity is cut off at visc_max.

A.1.12 Phase Change Information
Ra_410=0.0

clapeyron410=0.0235

transT410=0.78

width410=0.0058

These specify the phase change parameters (phase change Rayleigh number,
Clapeyron slope, ambient temperature, and phase change width,
respectively). The depth of this phase change is specified by z_410.

Ra_670=0.0

clapeyron670=-0.0235

transT670=0.875

width670=0.0058

As above. The depth of this phase change is specified by z_lmantle.

Ra_cmb=0.0

clapeyroncmb=-0.0235

transTcmb=0.875

widthcmb=0.0058

As above. The depth of this phase change is specified by z_cmb.

A.1.13 Momentum Equation Solver Parameters
stokes_flow_only=off If you wish only to solve for the velocity once (e.g., Stokes flow) then

change this parameter to on. However, if you want to do a convection
problem, this should be off.

remove_rigid_rotation=on

remove_angular_momentum=on

Whether to remove rigid body rotation component or net angular momentum
from the velocity solution. Only effective for global models.

Solver=cgrad Can be either cgrad for conjugate gradient solver or multigrid for
multigrid solver for the outer loop of the momentum solver.

node_assemble=on Whether to assemble stiffness matrix at the node level or not.
mg_cycle=1

down_heavy=3

up_heavy=3

vlowstep=1000

vhighstep=3

max_mg_cycles=50

Parameters for multigrid and cgrad solvers. For multigrid solver:
mg_cycle=1 for V cycle and 2 for W cycle; down_heavy and up_heavy

are the number of smoothing passes for downward/upward smoothing;
vlowstep and vhighstep are the number of smoothing passes at
lowest/highest levels; max_mg_cycles is the maximum number of
multigrid cycles used per solve; all these parameters should be small
integers.
For cgrad solver, vlowstep is the maximum iterations of the conjugate
gradient solver and should be a large integer.

piterations=1000 Maximum iterations of the outer loop for the momentum solver.
accuracy=1.0e-4 Convergence criterion for the momentum solver.
uzawa=cg

compress_iter_maxstep=100

Can be either cg or bicg. If set to cg, additional parameters control the
maximum iterations.

precond=on Whether to use the preconditioner.
aug_lagr=on

aug_number=2.0e3

Whether to use augmented stiff matrix and the weight of the augmented stiff
matrix.

86 APPENDIX A. INPUT PARAMETERS FOR CITCOMS

A.1.14 Energy Equation Solver Parameters
ADV=on If on, solves the energy equation.
fixed_timestep=0.0 If it is equal to 0, the size of the time step is variable and is determined

dynamically. Otherwise, the size of the time step is fixed at the specified
value.

finetunedt=0.9 Set the size of the time step to the specified fraction of a maximum stable
advection time step. Must be between 0 and 1.

adv_sub_iterations=2

adv_gamma=0.5

The number of iterations and the weight of each iteration for the energy
predictor-corrector solver.

filter_temp=off Using a Lenardic filter to remove the overshoots and undershoots of the
temperature field or not. The filter conserves the total energy.

monitor_max_T=on If on, the maximum value of the current and previous temperature fields are
compared. If the maximum temperature increases more than 5%, the energy
equation solver is rerun with a smaller time-step size. Keep this parameter
on to prevent numerical instability.

inputdiffusivity=1 Currently, don’t change this parameter. It is used only in problems which are
integrated backward in time.

A.1.15 Age Information
start_age=40.0 Set initial age (in Myrs). This age determines which files of various

time-dependent input to read in.
reset_startage=off If on, the initial age is set to start_age. If it is off and

tic_method=-1, the initial age is read in from previous output.

A.1.16 Debugging Information
DESCRIBE=off

BEGINNER=off

VERBOSE=off

These parameters affect the echo behavior of the CitcomS parser. Only in
non-Pyre version.

verbose=off This is used for debugging. If verbose is on, additional information is output
to a .info file.

see_convergence=on If on, the velocity residual will be output on the screen for every iteration of
the momentum solver.

A.1.17 HDF5 Output Parameters
cb_block_size=1048576

cb_buffer_size=4194304

Size for collective buffer in MPI-IO.

sieve_buf_size=1048576 Size of data sieve buffer.
output_alignment=262144

output_alignment_threshold=

524288

Memory alignment.

cache_mdc_nelmts=10330

cache_rdcc_nelmts=521

cache_rdcc_nbytes=1048576

Cache size for chunked dataset.

A.1. INPUT PARAMETERS GROUPED BY FUNCTIONALITY 87

A.1.18 Tracer Parameters
tracer=off If on, enables the tracers.
tracer_ic_method=0

tracers_per_element=10

tracer_file="tracer.dat"

Specify the initial location of the tracers. If tracer_ic_method=0, the
tracers are generated randomly, with the number of tracers per element
specified by tracers_per_element. If tracer_ic_method=1, the
location of the tracers is read from a file specified in tracer_file. If
tracer_ic_method=2, the location of the tracers is read from the old
tracer output, similar to tic_method=-1.

tracer_flavors=0 The number of flavors among the tracers. If set to 0, flavor counting is
turned off.

ic_method_for_flavors=0

z_interface=0.7

Specify the initial flavors of the tracers. Used only when
tracer_ic_method=0. Currently only ic_method_for_flavors=0 is
supported. A layered structure is generated. z_interface must be a
comma-separated list with (tracer_flavors-1) entries. Tracers above
the 1st radius in z_interface are of flavor 0, between the 1st and 2nd
radii are of flavor 1, ... etc.

regular_grid_deltheta=1.0

regular_grid_delphi=1.0

The grid spacing of the regular grid. The regular grid is an auxiliary grid to
help locate the tracers.

chemical_buoyancy=on If on, enables thermo-chemical convection.
buoy_type=1 If buoy_type=1, the composition field is determined by the ratio method

[19]. (No other methods are implemented yet.)
buoyancy_ratio=1.0 The ratio of chemical density anomaly to the reference density, must be a

comma-separated list with (tracer_flavors-1) entries.
itracer_warnings=on The warning level of the tracer module.
tracer_enriched=off

Q0_enriched=0.0

Whether the composition anomaly is associated with radioactive heating
anomaly. If on, specifies the internal heating number inside the composition
anomaly.

A.1.19 Dimensional Information
radius=6371e3
density=3340.0

thermdiff=1.0e-6

gravacc=9.81

thermexp=3.0e-5

refvisc=1.0e+21

cp=1200

density_above=1030.0

density_below=6600.0

Various dimensional information in SI units.

A.1.20 Required Information
Problem=convection

Geometry=sphere

For this version of CitcomS, all of these parameters must be set as indicated.

88 APPENDIX A. INPUT PARAMETERS FOR CITCOMS

Appendix B

CitcomS Input File Format

B.1 Introduction
CitcomS expects Unix-styled ASCII files (i.e., no carriage character following new line character) for all input files.
This can be a nuisance in DOS/Windows systems. You may want to find a text editor that can write Unix-style ASCII
files. In the following, words in normal courier must be input exactly as shown, while italicized words should
be substituted by your values. All parameters are in non-dimensional units unless specified.

B.2 Coordinate Files
For regional version of CitcomS, the mesh must be regular, but the mesh spacing may be unequal. The coor_file
has the format:

nsd= 1
1 theta1
2 theta2
... ...
nodex theta_nodex
nsd= 2
1 phi1
2 phi2
... ...
nodey phi_nodey
nsd= 3
1 r1
2 r2
... ...
nodez r_nodez

For the full spherical version of CitcomS, the mesh of each cap must be regular and equidistant in the horizontal
dimension. Only the vertical dimension is specified by coor_file. The coor_file has the format:

nsd= 3
1 r1
2 r2
... ...
nodez r_nodez

89

90 APPENDIX B. CITCOMS INPUT FILE FORMAT

B.3 Velocity Boundary Condition Files
If vel_bound_file is set to bvel.dat, then it is necessary to have one bvel.dat file per cap for each million-
year interval. For example, if start_age=83, then the following files are needed for the regional mesh:

bvel.dat84
bvel.dat83
bvel.dat82
...
bvel.dat0

TIP: Even though the model starts at 83 million years before the present, by default it will attempt to
read in both a file for 84 and a file for 83 million years ago. To deal with this, create a duplicate copy of
bvel.dat83 and call it bvel.dat84

In this example, the model age will start at 83 Ma and decrease toward 0 Ma. At any particular age, the velocity
boundary conditions are interpolated in time according to the nearest bvel.dat files. Once the age becomes negative,
the velocity boundary conditions are specified by the content of bvel.dat0.

TIP: By setting start_age=0 and providing identical bvel.dat0 and bvel.dat1, you can effec-
tively get time-invariant velocity boundary conditions.

For the global mesh, each of the 12 caps requires one file for each million-year interval. For example, these files are
needed for an 82-million-year age:

bvel.dat82.0
bvel.dat82.1
bvel.dat82.2
...
bvel.dat82.11

Each velocity boundary condition file has the format:

Vx Vy

The units of Vx and Vy are cm/yr.

B.4 Material Files
In this version of CitcomS, the implementation of material support is not working. The material output has been
disabled and is documented here for completion. If mat_file is set to mat.dat, then it is necessary to have one
mat.dat file for each million-year interval. For example, if start_age=83, then the following files are needed:

mat.dat84
mat.dat83
mat.dat82
...
mat.dat0

The same note about vel_bound_file (see Section B.3 above) applies. The format of mat_file is:

n viscosity_factor

B.5. LITHOSPHERE AGE FILES 91

B.5 Lithosphere Age Files
If lith_age_file is set to lith.dat, then it is necessary to have one bvel.dat file for each million-year
interval. For example, if start_age=83, then the following files are needed for the regional mesh:

lith.dat84
lith.dat83
lith.dat82
...
lith.dat0

The same note about vel_bound_file (see Section B.3 above) still applies. The input age is in millions of years.
For the global mesh, each of the 12 caps requires one file for each million-year interval. For example, these files are
needed for an 82-million-year age:

lith.dat82.0
lith.dat82.1
lith.dat82.2
...
lith.dat82.11

The format of lith_age_file is:

n age

B.6 Tracer Files
This file contains the initial location of all tracers. The first line is the number of tracers and the number of columns in
the file. The first three columns are the coordinates of the tracers. The fourth column, if present, indicates the flavor
of the tracers.

num_tracers num_columns
theta phi radius [flavor]

B.7 Reference State Files
This file contains the profiles of the reference state. This file must contain at least nodez lines, and each line must
contain 7 columns, where the meaning of each column is:

ρr g α cP reserved reserved reserved

92 APPENDIX B. CITCOMS INPUT FILE FORMAT

Appendix C

CitcomS Output File Format

C.1 Introduction
The format of the output files of CitcomS is described here. In the following sections, the model prefix is assumed
as test-case, the processor number as 0, and the time step as 10. All outputs are in non-dimensional units unless
specified.

C.2 Postprocessed Cap Output (test-case.cap00.10)
The command autocombine.py produces 1 cap file for regional CitcomS and 12 cap files for the full CitcomS.
The first line of the cap file is a comment describing the node geometry (nodex× nodey× nodez). The rest of the
file is column-based, where the meaning of each column is:

colatitude longitude radius vel_colat vel_lon vel_r temperature viscosity

C.3 Postprocessed Opt Output (test-case.opt00.10)
If the optional output contains node-based fields (e.g., comp_nd, pressure, and stress), the command autocombine.py
produces 1 opt file for regional CitcomS and 12 opt files for the full CitcomS. The first line of the opt file is a comment
describing the node geometry (nodex × nodey × nodez). The rest of the file is column-based, where the meaning
of each column is defined in the corresponding .general file. For example, if the .general file contains these two
lines, then the first column in the opt file is the composition, the 2nd column is the pressure, and the last six columns
are the stress.

field = composition, pressure, stress
structure = scalar, scalar, 6-vector

C.4 Postprocessed Surf Output (test-case.surf0.10)
An undocumented (and unmaintained) post-processing script batchsurf.py can combine the coord, surf, and
botm output. The format of the combined surf file is listed for completion. The first line of the surf file is a comment
describing the node geometry (nodex × nodey). The rest of the file is column-based, where the meaning of each
column is:

colatitude longitude topography heat_flux vel_colat vel_lon

93

94 APPENDIX C. CITCOMS OUTPUT FILE FORMAT

C.5 Time Output (test-case.time)
This file reports non-dimensional elapsed model time and spent CPU time (in seconds), and it is only outputted on
computer node 0. The meaning of each column is:

step total_t delta_t total_cpu_time step_cpu_time

C.6 ASCII Output

C.6.1 Coordinate Output (test-case.coord.0)
This file is only outputted at the 0th time step. The first line is a header. The rest of the file is column-based, where the
meaning of each column is:

colatitude longitude radius

C.6.2 Velocity and Temperature Output (test-case.velo.0.10)
The first two lines of this file are headers. The rest of the file is column-based, where the meaning of each column is:

vel_colat vel_lon vel_r temperature

C.6.3 Viscosity Output (test-case.visc.0.10)
The first line of this file is a header. The rest of the file is column-based, where the meaning of the only column is:

viscosity

C.6.4 Material Output (test-case.mat.0)
In this version of CitcomS, the implementation of material support is not working. The material output has been
disabled and is documented here for completion. This file is only outputted at the 0th time step. There is no header.
The meaning of each column is:

element_number layer material

C.6.5 Surface Variables Output (test-case.surf.0.10 and test-case.botm.0.10)
The first line of each file is a header. The rest of each file is column-based, where the meaning of each column is:

topography heat_flux vel_colat vel_lon

C.6.6 Stress Output (test-case.stress.0.10)
The first two lines of the file are headers. The rest of the file is column-based, where the meaning of each column is:

Sθθ Sφφ Srr Sθφ Sθr Sφr

You can use the above values to form the following symmetric stress tensor: Sθθ Sθφ Sθr
Sφθ Sφφ Sφr
Srθ Srφ Srr

 (C.1)

C.6. ASCII OUTPUT 95

C.6.7 Pressure Output (test-case.pressure.0.10)
The first line of the file is a header. The rest of the file is column-based, where the meaning of the only column is:

pressure

C.6.8 Horizontal Average Output (test-case.horiz_avg.0.10)
The first line of the file is a header. The rest of the file is column-based, where the meaning of each column is:

radius temperature RMS(V_horizontal) RMS(V_vertical)

C.6.9 Geoid Output (test-case.geoid.10)
The first line of the file is a header. The rest of the file is column-based, where the meaning of each column is:

col 1 spherical harmonic degrees (l)
col 2 spherical harmonic orders (m)
col 3 cosine coefficients of total geoid (Slm)
col 4 sine coefficients of total geoid (Clm)
col 5 cosine coefficients of the geoid due to surface topography
col 6 sine coefficents of the geoid due to surface topography
col 7 cosine coefficients of the geoid due to internal density variation
col 8 sine coefficients of the geoid due to internal density variation

The units of the geoid coefficients are meters. The geoid field can be reconstructed by∑
(Slm sin(mφ) + Clm cos(mφ))Plm(cos θ)

where Plm is the associated Legendre polynomials.

C.6.10 Tracer Output (test-case.tracer.0.10)
The first line of the file is a header. The second field in the header is the number of tracers in the file. The third field in
the header is the number of columns in the file. The rest of the file is column-based, where the meaning of the columns
is:

theta phi radius [flavor]

C.6.11 Composition Output (test-case.comp_el.0.10 and test-case.comp_nd.0.10)
These files contain the composition field either on the element (comp_el) or on the node (comp_nd). The format
of the files is the same. The first two lines of the file are headers. The fourth field in the first line is the number of
composition components. In the second line, the first field is the current bulk sum of composition 1. The second field
is the initial bulk sum of composition 1. The third and fourth fields (if they exist) are the current and initial bulk sum
of composition 2, etc. The rest of the file is column-based, where the meaning of the columns is:

composition1 [composition2 ... compositionN]

C.6.12 Heating Output (test-case.heating.0.10)
These files contain various heating terms on the element. The first two lines of the file are the headers. The rest of the
file is column-based, where the meaning of the columns is:

adiabatic_heating viscous_heating latent_heating

96 APPENDIX C. CITCOMS OUTPUT FILE FORMAT

C.7 HDF5 Output (test-case.h5)
The format and layout of HDF5 output is described in Section 4.4 on page 39.

C.8 Misc. Binary Output

C.8.1 Checkpoint Output (test-case.checkpoint.0.10)
These files are used for restarting the run. These files are not portable. You cannot run a model on machine A, copy
the checkpoint files to machine B, and expect you can always restart the simulation on machine B. Their format is
undocumented on purpose and will remain so.

C.8.2 Domain Output (test-case.domain)
This file is only outputted at the 0th time step. This file is output by rank-0 processor only. It contains the do-
main bounds of all processors in binary format. The file begins with four intergers: nproc, ncolumns, const1,
const2, where nproc is the number of processors, ncolumns is 10, const1 and const2 are used to detect
binary incompatibility. The rest of the file has nproc×ncolumns doubles, the columns contains the min/max of
radius and the θ, φ coordinates of the four corners:

r_min r_max theta0 phi0 theta1 phi1 theta2 phi2 theta3 phi3

C.8.3 Coordinate Binary Output (test-case.coord_bin.0)
These files are only outputted at the 0th time step. These files contain the coordinates of nodes in binary format. The
file begins with four intergers: nodex, nodey, nodez, const, then followed by the θ, φ, r coordinates of all nodes.

C.8.4 Seismic Output (test-case.seismic.0.10)
These files contain the density, P wave velocity and S wave velocity in binary format. The density of all nodes is stored
in double, then followed by P wave velocity of all nodes, and finally S wave velocity of all nodes.

Appendix D

License

GNU GENERAL PUBLIC LICENSE Version 2, June 1991. Copyright (C) 1989, 1991 Free Software Founda-
tion, Inc. 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
Everyone is permitted to copy and distribute verbatim copies of this license document, but changing it is not allowed.

Preamble
The licenses for most software are designed to take away your freedom to share and change it. By contrast, the
GNU General Public License is intended to guarantee your freedom to share and change free software – to make sure
the software is free for all its users. This General Public License applies to most of the Free Software Foundation’s
software and to any other program whose authors commit to using it. (Some other Free Software Foundation software
is covered by the GNU Library General Public License instead.) You can apply it to your programs, too.

When we speak of free software, we are referring to freedom, not price. Our General Public Licenses are designed
to make sure that you have the freedom to distribute copies of free software (and charge for this service if you wish),
that you receive source code or can get it if you want it, that you can change the software or use pieces of it in new
free programs; and that you know you can do these things.

To protect your rights, we need to make restrictions that forbid anyone to deny you these rights or to ask you
to surrender the rights. These restrictions translate to certain responsibilities for you if you distribute copies of the
software, or if you modify it.

For example, if you distribute copies of such a program, whether gratis or for a fee, you must give the recipients
all the rights that you have. You must make sure that they, too, receive or can get the source code. And you must show
them these terms so they know their rights.

We protect your rights with two steps:

1. Copyright the software, and

2. Offer you this license which gives you legal permission to copy, distribute and/or modify the software.

Also, for each author’s protection and ours, we want to make certain that everyone understands that there is no warranty
for this free software. If the software is modified by someone else and passed on, we want its recipients to know that
what they have is not the original, so that any problems introduced by others will not reflect on the original authors’
reputations.

Finally, any free program is threatened constantly by software patents. We wish to avoid the danger that redistrib-
utors of a free program will individually obtain patent licenses, in effect making the program proprietary. To prevent
this, we have made it clear that any patent must be licensed for everyone’s free use or not licensed at all.

The precise terms and conditions for copying, distribution and modification follow.

97

98 APPENDIX D. LICENSE

GNU GENERAL PUBLIC LICENSE TERMS AND CONDITIONS FOR
COPYING, DISTRIBUTION AND MODIFICATION

0. This License applies to any program or other work which contains a notice placed by the copyright holder say-
ing it may be distributed under the terms of this General Public License. The “Program” below refers to any
such program or work, and a “work based on the Program” means either the Program or any derivative work
under copyright law: that is to say, a work containing the Program or a portion of it, either verbatim or with
modifications and/or translated into another language. (Hereinafter, translation is included without limitation in
the term “modification.”) Each licensee is addressed as “you.”

Activities other than copying, distribution and modification are not covered by this License; they are outside
its scope. The act of running the Program is not restricted, and the output from the Program is covered only if its
contents constitute a work based on the Program (independent of having been made by running the Program).
Whether that is true depends on what the Program does.

1. You may copy and distribute verbatim copies of the Program’s source code as you receive it, in any medium,
provided that you conspicuously and appropriately publish on each copy an appropriate copyright notice and
disclaimer of warranty; keep intact all the notices that refer to this License and to the absence of any warranty;
and give any other recipients of the Program a copy of this License along with the Program.

You may charge a fee for the physical act of transferring a copy, and you may at your option offer warranty
protection in exchange for a fee.

2. You may modify your copy or copies of the Program or any portion of it, thus forming a work based on the
Program, and copy and distribute such modifications or work under the terms of Section 1 above, provided that
you also meet all of these conditions:

(a) You must cause the modified files to carry prominent notices stating that you changed the files and the date
of any change.

(b) You must cause any work that you distribute or publish, that in whole or in part contains or is derived from
the Program or any part thereof, to be licensed as a whole at no charge to all third parties under the terms
of this License.

(c) If the modified program normally reads commands interactively when run, you must cause it, when started
running for such interactive use in the most ordinary way, to print or display an announcement including
an appropriate copyright notice and a notice that there is no warranty (or else, saying that you provide a
warranty) and that users may redistribute the program under these conditions, and telling the user how to
view a copy of this License. (Exception: if the Program itself is interactive but does not normally print
such an announcement, your work based on the Program is not required to print an announcement.)

These requirements apply to the modified work as a whole. If identifiable sections of that work are not derived
from the Program, and can be reasonably considered independent and separate works in themselves, then this
License, and its terms, do not apply to those sections when you distribute them as separate works. But when
you distribute the same sections as part of a whole which is a work based on the Program, the distribution of the
whole must be on the terms of this License, whose permissions for other licensees extend to the entire whole,
and thus to each and every part regardless of who wrote it.

Thus, it is not the intent of this section to claim rights or contest your rights to work written entirely by you;
rather, the intent is to exercise the right to control the distribution of derivative or collective works based on the
Program.

In addition, mere aggregation of another work not based on the Program with the Program (or with a work based
on the Program) on a volume of a storage or distribution medium does not bring the other work under the scope
of this License.

3. You may copy and distribute the Program (or a work based on it, under Section 2) in object code or executable
form under the terms of Sections 1 and 2 above provided that you also do one of the following:

99

(a) Accompany it with the complete corresponding machine-readable source code, which must be distributed
under the terms of Sections 1 and 2 above on a medium customarily used for software interchange; or,

(b) Accompany it with a written offer, valid for at least three years, to give any third party, for a charge no
more than your cost of physically performing source distribution, a complete machine-readable copy of
the corresponding source code, to be distributed under the terms of Sections 1 and 2 above on a medium
customarily used for software interchange; or,

(c) Accompany it with the information you received as to the offer to distribute corresponding source code.
(This alternative is allowed only for noncommercial distribution and only if you received the program in
object code or executable form with such an offer, in accord with Subsection b above.)

The source code for a work means the preferred form of the work for making modifications to it. For an
executable work, complete source code means all the source code for all modules it contains, plus any associated
interface definition files, plus the scripts used to control compilation and installation of the executable. However,
as a special exception, the source code distributed need not include anything that is normally distributed (in
either source or binary form) with the major components (compiler, kernel, and so on) of the operating system
on which the executable runs, unless that component itself accompanies the executable.

If distribution of executable or object code is made by offering access to copy from a designated place, then
offering equivalent access to copy the source code from the same place counts as distribution of the source code,
even though third parties are not compelled to copy the source along with the object code.

4. You may not copy, modify, sublicense, or distribute the Program except as expressly provided under this License.
Any attempt otherwise to copy, modify, sublicense or distribute the Program is void, and will automatically
terminate your rights under this License. However, parties who have received copies, or rights, from you under
this License will not have their licenses terminated so long as such parties remain in full compliance.

5. You are not required to accept this License, since you have not signed it. However, nothing else grants you
permission to modify or distribute the Program or its derivative works. These actions are prohibited by law if
you do not accept this License. Therefore, by modifying or distributing the Program (or any work based on the
Program), you indicate your acceptance of this License to do so, and all its terms and conditions for copying,
distributing or modifying the Program or works based on it.

6. Each time you redistribute the Program (or any work based on the Program), the recipient automatically receives
a license from the original licensor to copy, distribute or modify the Program subject to these terms and condi-
tions. You may not impose any further restrictions on the recipients’ exercise of the rights granted herein. You
are not responsible for enforcing compliance by third parties to this License.

7. If, as a consequence of a court judgment or allegation of patent infringement or for any other reason (not
limited to patent issues), conditions are imposed on you (whether by court order, agreement or otherwise) that
contradict the conditions of this License, they do not excuse you from the conditions of this License. If you
cannot distribute so as to satisfy simultaneously your obligations under this License and any other pertinent
obligations, then as a consequence you may not distribute the Program at all. For example, if a patent license
would not permit royalty-free redistribution of the Program by all those who receive copies directly or indirectly
through you, then the only way you could satisfy both it and this License would be to refrain entirely from
distribution of the Program.

If any portion of this section is held invalid or unenforceable under any particular circumstance, the balance of
the section is intended to apply and the section as a whole is intended to apply in other circumstances.

It is not the purpose of this section to induce you to infringe any patents or other property right claims or to
contest validity of any such claims; this section has the sole purpose of protecting the integrity of the free soft-
ware distribution system, which is implemented by public license practices. Many people have made generous
contributions to the wide range of software distributed through that system in reliance on consistent application
of that system; it is up to the author/donor to decide if he or she is willing to distribute software through any
other system and a licensee cannot impose that choice.

This section is intended to make thoroughly clear what is believed to be a consequence of the rest of this License.

100 APPENDIX D. LICENSE

8. If the distribution and/or use of the Program is restricted in certain countries either by patents or by copyrighted
interfaces, the original copyright holder who places the Program under this License may add an explicit geo-
graphical distribution limitation excluding those countries, so that distribution is permitted only in or among
countries not thus excluded. In such case, this License incorporates the limitation as if written in the body of
this License.

9. The Free Software Foundation may publish revised and/or new versions of the General Public License from
time to time. Such new versions will be similar in spirit to the present version, but may differ in detail to address
new problems or concerns.

Each version is given a distinguishing version number. If the Program specifies a version number of this License
which applies to it and “any later version,” you have the option of following the terms and conditions either of
that version or of any later version published by the Free Software Foundation. If the Program does not specify
a version number of this License, you may choose any version ever published by the Free Software Foundation.

10. If you wish to incorporate parts of the Program into other free programs whose distribution conditions are
different, write to the author to ask for permission. For software which is copyrighted by the Free Software
Foundation, write to the Free Software Foundation; we sometimes make exceptions for this. Our decision will
be guided by the two goals of preserving the free status of all derivatives of our free software and of promoting
the sharing and reuse of software generally.

NO WARRANTY
11. BECAUSE THE PROGRAM IS LICENSED FREE OF CHARGE, THERE IS NO WARRANTY FOR THE

PROGRAM, TO THE EXTENT PERMITTED BY APPLICABLE LAW. EXCEPT WHEN OTHERWISE
STATED IN WRITING THE COPYRIGHT HOLDERS AND/OR OTHER PARTIES PROVIDE THE PRO-
GRAM “AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUD-
ING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
FOR A PARTICULAR PURPOSE. THE ENTIRE RISK AS TO THE QUALITY AND PERFORMANCE OF
THE PROGRAM IS WITH YOU. SHOULD THE PROGRAM PROVE DEFECTIVE, YOU ASSUME THE
COST OF ALL NECESSARY SERVICING, REPAIR OR CORRECTION.

12. IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN WRITING WILL ANY
COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MAY MODIFY AND/OR REDISTRIBUTE THE
PROGRAM AS PERMITTED ABOVE, BE LIABLE TO YOU FOR DAMAGES, INCLUDING ANY GEN-
ERAL, SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF THE USE OR
INABILITY TO USE THE PROGRAM (INCLUDING BUT NOT LIMITED TO LOSS OF DATA OR DATA
BEING RENDERED INACCURATE OR LOSSES SUSTAINED BY YOU OR THIRD PARTIES OR A FAIL-
URE OF THE PROGRAM TO OPERATE WITH ANY OTHER PROGRAMS), EVEN IF SUCH HOLDER
OR OTHER PARTY HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

END OF TERMS AND CONDITIONS

How to Apply These Terms to Your New Programs
If you develop a new program, and you want it to be of the greatest possible use to the public, the best way to achieve
this is to make it free software which everyone can redistribute and change under these terms.

To do so, attach the following notices to the program. It is safest to attach them to the start of each source file to
most effectively convey the exclusion of warranty; and each file should have at least the “copyright” line and a pointer
to where the full notice is found. For example:

One line to give the program’s name and a brief idea of what it does. Copyright © (year) (name of author)

This program is free software; you can redistribute it and/or modify it under the terms of the GNU General
Public License as published by the Free Software Foundation; either version 2 of the License, or (at your
option) any later version.

101

This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without
even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
See the GNU General Public License for more details.

You should have received a copy of the GNU General Public License along with this program; if not,
write to the Free Software Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA

Also add information on how to contact you by electronic and paper mail.
If the program is interactive, make it output a short notice like this when it starts in an interactive mode:

Gnomovision version 69, Copyright © year name of author Gnomovision comes with ABSOLUTELY
NO WARRANTY; for details type ‘show w’. This is free software, and you are welcome to redistribute it
under certain conditions; type ‘show c’ for details.

The hypothetical commands ‘show w’ and ‘show c’ should show the appropriate parts of the General Public License.
Of course, the commands you use may be called something other than ‘show w’ and ‘show c’; they could even be
mouse-clicks or menu items – whatever suits your program.

You should also get your employer (if you work as a programmer) or your school, if any, to sign a “copyright
disclaimer” for the program, if necessary. Here is a sample; alter the names:

Yoyodyne, Inc., hereby disclaims all copyright interest in the program ‘Gnomovision’ (which makes
passes at compilers) written by James Hacker.

(signature of Ty Coon)
1 April 1989
Ty Coon, President of Vice

This General Public License does not permit incorporating your program into proprietary programs. If your program
is a subroutine library, you may consider it more useful to permit linking proprietary applications with the library. If
this is what you want to do, use the GNU Library General Public License instead of this License.

102 APPENDIX D. LICENSE

Bibliography

[1] Moresi, L., M. Gurnis, and S. Zhong (2000), Plate tectonics and convection in the Earth’s mantle: Toward a
numerical simulation, Comp. Sci. Engin., 2, 22-33.

[2] Moresi, L.N., and V.S. Solomatov (1995), Numerical investigation of 2D convection with extremely large vis-
cosity variations, Phys. Fluid, 7, 2,154-2,162.

[3] Moresi, L., S. Zhong, and M.Gurnis (1996), The accuracy of finite element solutions of Stokes’ flow with strongly
varying viscosity, Phys. Earth Planet. Inter., 97, 83-94.

[4] Moresi, L.N., and M. Gurnis (1996), Constraints on the lateral strength of slabs from three-dimensional dynamic
flow models, Earth Planet. Sci. Lett., 138, 15-28.

[5] Zhong, S., M. Gurnis, and L. Moresi (1998), The role of faults, nonlinear rheology, and viscosity structure in
generating plates from instantaneous mantle flow models, J. Geophys. Res., 103, 15,255-15,268.

[6] Zhong, S., M.T. Zuber, L.N. Moresi, and M. Gurnis (2000), The role of temperature-dependent viscosity and
surface plates in spherical shell models of mantle convection, J. Geophys. Res., 105, 11,063-11,082.

[7] Tan, E., M. Gurnis, and L. Han (2002), Slabs in the lower mantle and their modulation of plume formation,
Geochem. Geophys. Geosys., 3, 1067.

[8] Conrad, C.P., and M. Gurnis (2003), Seismic tomography, surface uplift, and the breakup of Gond-
wanaland: Integrating mantle convection backwards in time, Geochem. Geophys. Geosys., 4(3), 1031,
doi:10.1029/2001GC000299.

[9] Hughes, T.J.R. The Finite Element Method: Linear Static and Dynamic Finite Element Analysis. Englewood
Cliffs, New Jersey: Prentice-Hall, Inc.; 1987. 672 p.

[10] Ramage, A., and A.J. Wathen (1994), Iterative solution techniques for the Stokes and Navier-Stokes equations,
Int. J. Numer. Methods. Fluids, 19, 67-83.

[11] Brooks, A.N. A Petrov-Galerkin Finite Element Formulation for Convecton Dominated Flows. Unpublished doc-
toral thesis, California Institute of Technology, Pasadena, CA, 1981.

[12] Cahouet, J., and J.-P. Chabard (1988), Some fast 3D finite element solvers for the generalized Stokes problem,
Int. J. Numer. Methods. Fluids, 8, 869-895.

[13] Atanga, J., and D. Silvester (1992), Iterative methods for stabilized mixed velocity-pressure finite elements, Int.
J. Numer. Methods. Fluids, 14, 71-81.

[14] Hager, B.H., and R.J. O’Connell (1981), A simple global model of plate dynamics and mantle convection, J.
Geophys. Res., 86, 4,843-4,867.

[15] Tan, E., E. Choi, P. Thoutireddy, M. Gurnis, and M. Aivazis (2006), GeoFramework: Coupling multiple
models of mantle convection within a computational framework, Geochem., Geophys., Geosyst. 7, Q06001,
doi:10.1029/2005GC001155.

[16] Zhong, S., M. Gurnis, and L. Moresi (1996), Free-surface formulation of mantle convection–I. Basic theory and
appication to plumes, Geophys. J. Int., 127, 708-718.

103

104 BIBLIOGRAPHY

[17] Zhong, S., A. Paulson, and J. Wahr (2003), Three-dimensional finite-element modeling of Earth’s viscoelastic
deformation: effects of lateral variations in lithospheric thickness, Geophys. J. Int., 155, 679-695.

[18] McNamara, A.K., and S. Zhong (2004), Thermochemical structures within a spherical mantle: Superplumes or
Piles? J. Geophys. Res., 109, B07402, doi:10.1029/2003JB002847.

[19] Tackley, P.J., and S.D. King (2003), Testing the tracer ratio method for modeling active compositional fields in
mantle convection simulations, Geochem. Geophys. Geosyst., 4, 8302, doi:10.1029/2001GC000214.

[20] Trampert, J., P. Vacher, and N. Vlaar (2001), Sensitivities of seismic velocities to temperature, pressure and
composition in the lower mantle, Phys. Earth Planet. Inter., 124, 255-267.

	I Preface
	II Chapters
	Introduction
	About CitcomS
	History
	Governing Equations
	Numerical Methods
	Meshes and Geometry

	Installation and Getting Help
	Introduction
	Getting Help
	System Requirements
	C Compiler
	MPI Library
	MPI C Compiler Command

	Downloading and Unpacking Source
	Installation Procedure
	Installing to a Secondary Location (Optional)

	Configuration
	Configure Usage
	Environment Variables
	MPI Configuration
	Manually Specifying MPI include and lib Directories
	Manually Specifying MPI include and lib Directories and an Alternative Compiler

	HDF5 Configuration (Optional)
	Additional Tools
	NumPy
	PyTables
	HDFView
	OpenDXutils

	GGRD Configuration (Optional)
	Installing from the Software Repository
	Tools You Will Need
	Download Source from Subversion
	Generating the GNU Build System

	Running CitcomS
	Using CitcomS
	Changing Parameters
	Uniprocessor Example
	Example: Uniprocessor, example0

	Multiprocessor Example
	Example: Multiprocessor, example1
	Output Formats

	Working with CitcomS HDF5 Files
	Introduction
	About HDF5
	Input Parameters
	Optimizing Parallel I/O

	Data Layout
	Accessing Data
	Inspecting Structures
	Converting to ASCII Files
	Accessing Data in Python
	Accessing Data Using HDFView

	Postprocessing and Graphics
	Introduction
	Postprocessing on a Beowulf Cluster
	Postprocessing in a Non-Cluster Environment
	Using OpenDX for Regional Sphere Visualization
	Using OpenDX for Full Sphere Visualization
	Using OpenDX for HDF5 Visualization
	Using MayaVi for Visualization
	Using GMT Commands for Visualization

	Cookbooks
	Introduction
	Cookbook 1: Global Model
	Problem
	Solution
	Example: Global Model, cookbook1

	Discussion

	Cookbook 2: Domain Size and Velocity Boundary Conditions
	Problem
	Solution
	Example: Velocity Boundary Conditions, cookbook2

	Discussion

	Cookbook 3: Temperature-Dependent Viscosity
	Problem
	Solution
	Example: Temperature-Dependent Viscosity, cookbook3

	Cookbook 4: Regionally Refined Meshes
	Problem
	Solution
	Example: Regionally Refined Meshes, cookbook4

	Discussion

	Cookbook 5: Subduction Models with Trench Rollback
	Problem
	Solution
	Example: Subduction Models with Trench Rollback, cookbook5

	Discussion

	Cookbook 6: Pseudo-Free-Surface Formulation
	Problem
	Solution
	Discussion

	Cookbook 7: Thermo-Chemical Convection
	Problem
	Solution
	Example: Thermo-Chemical Convection, cookbook7

	Discussion

	Cookbook 8: Compressible Steady-State Convection
	Problem
	Solution
	Example: Compressible Steady-State Convection, cookbook8

	Discussion

	III Appendices
	Input Parameters for CitcomS
	Input Parameters Grouped by Functionality
	Parameters that Control Input Files
	Parameters that Control Output Files
	Mesh and Processors Setup
	Domain Size
	Restarting the Code
	Run Length
	Initial Conditions
	Boundary Conditions
	Non-Dimensional Numbers
	Depth Information
	Viscosity
	Phase Change Information
	Momentum Equation Solver Parameters
	Energy Equation Solver Parameters
	Age Information
	Debugging Information
	HDF5 Output Parameters
	Tracer Parameters
	Dimensional Information
	Required Information

	CitcomS Input File Format
	Introduction
	Coordinate Files
	Velocity Boundary Condition Files
	Material Files
	Lithosphere Age Files
	Tracer Files
	Reference State Files

	CitcomS Output File Format
	Introduction
	Postprocessed Cap Output (test-case.cap00.10)
	Postprocessed Opt Output (test-case.opt00.10)
	Postprocessed Surf Output (test-case.surf0.10)
	Time Output (test-case.time)
	ASCII Output
	Coordinate Output (test-case.coord.0)
	Velocity and Temperature Output (test-case.velo.0.10)
	Viscosity Output (test-case.visc.0.10)
	Material Output (test-case.mat.0)
	Surface Variables Output (test-case.surf.0.10 and test-case.botm.0.10)
	Stress Output (test-case.stress.0.10)
	Pressure Output (test-case.pressure.0.10)
	Horizontal Average Output (test-case.horiz_avg.0.10)
	Geoid Output (test-case.geoid.10)
	Tracer Output (test-case.tracer.0.10)
	Composition Output (test-case.comp_el.0.10 and test-case.comp_nd.0.10)
	Heating Output (test-case.heating.0.10)

	HDF5 Output (test-case.h5)
	Misc. Binary Output
	Checkpoint Output (test-case.checkpoint.0.10)
	Domain Output (test-case.domain)
	Coordinate Binary Output (test-case.coord_bin.0)
	Seismic Output (test-case.seismic.0.10)

	License

