
jMDP User’s Guide

Germán Riaño, Andrés Sarmiento and Daniel F. Silva
Universidad de Los Andes

Contents

1 Java and Object Oriented Programming 1

2 Markov Decision Process - The Mathematical Model 2
2.1 Finite Horizon Problems . 3
2.2 Infinite Horizon Problems . 4

2.2.1 Discounted Cost . 4
2.2.2 Total Cost . 5
2.2.3 Average Cost . 5

2.3 Deterministic Dynamic Programming . 6
2.4 Main modeling elements in MDP . 6

3 Framework Design 7

4 Examples 10
4.1 Deterministic inventory problem . 10
4.2 Finite horizon stochastic inventory problem . 14
4.3 Infinite horizon stochastic inventory problem . 17

5 Advanced Features 20
5.1 States and Actions . 21
5.2 Decision Rules and Policies . 21
5.3 MDP class . 22
5.4 Solver classes . 22

5.4.1 FiniteSolver . 22
5.4.2 ValueIterationSolver . 23
5.4.3 PolicyIterationSolver . 23

6 Further Development 23

Introduction

Java package for Markov Decision Process Package (JMDP) is an object oriented framework de-
signed to model dynamic programming problems (DP) and Markov Decision Processes (MDPs).

1 Java and Object Oriented Programming

Java is a publicly available language developed by Sun Microsystems. The main characteristics
that Sun intended to have in Java are:

• Object-Oriented.

1

• Robust.

• Secure.

• Architecture Neutral

• Portable

• High Performance

• Interpreted

• Threaded

• Dynamic

Object Oriented Programming (OOP) is not a new idea. However it has not have an increased
development until recently. OOP is based on four key principles:

• abstraction.

• encapsulation

• inheritance

• polymorphism

An excellent explanation of OOP and the Java programming language can be found in [7].
The abstraction capability is the one that interests us most. Java allows us to define abstract

types like Actions, States, etc. We also define abstract functions like immediateCost(). We can
program the algorithm in terms of this abstract objects and functions, creating a flexible tool. This
tool can be used to define and solve DP problems. All the user has to do is to implement the
abstract functions. What it is particularly nice is that if a function is declared as abstract, then
the compiler itself will require the user to implement it before attempting to run the model.

2 Markov Decision Process - The Mathematical Model

The general problems that can be modeled and solved with the present framework can be classified
in finite or infinite horizon problems. In any of these cases, the problem can be deterministic or
stochastic. See Figure 1.

Finite horizon Infinite horizon

Total reward Total reward
Average reward

per stage
Discounted

reward

Deterministic Stochastic.

Figure 1: Taxonomy for MDP problems. WARNNING: “rewards” need to be changed to “costs”.

The deterministic problems are known as Dynamic Programming problems, and the stochastic
problems are commonly called MDPs.

2

2.1 Finite Horizon Problems

We will show how a Markov Decision Process is built. Consider a discrete space, discrete time,
bivariate random process {(Xt, At), t = 0, 1, . . . , T}. Each of the Xt ∈ St represents the state of
the system at stage t, and each At ∈ At is the action taken at that stage. The quantity T < ∞
is called the horizon of the problem. The sets St and At are called the space state and the action
space, respectively, and represent the states and actions available at stage t; we will assume that
both are finite. The dynamics of the system are defined by two elements. First, we assume the
system has the following Markov property

P{Xt+1 = j|Xt = i, At = a}
= P{Xt+1 = j|Xt = i, At = a,Xt−1 = it−1, At−1 = at−1, . . . , X0 = i0}.

We call pijt(a) = P{Xt+1 = j|Xt = i, At = a} the transition probabilities. Next, actions are taken
when a state is realized. In general the action taken depends on the history of the process up to
time t, i.e. Ht = (X0, A0, X1, A1, . . . , Xt−1, At−1, Xt). A decision rule is a function πt that given
a history realization assign a probability distributions over the set A. A sequence of decision rules
π = (π0, π1, . . . , πT) is called a policy . We call Π is the set of all policies. A policy is called Markov
if given Xt all previous history becomes irrelevant, that is

Pπ{At = a|Xt = i, At−1 = at−1, Xt−1 = it−1, . . .} = Pπ{At = a|Xt = i},

where we use Pπ{·} to denote the probability measure (on events defined by (Xt, At)) induced by
π. A Markov policy is called stationary if for all t = 0, 1, . . ., and all i ∈ S and a ∈ A,

Pπ{At = a|Xt = i} = Pπ{A0 = a|X0 = i}.

Notice that a stationary policy is completely determined by a single decision rule, and we have
π = (π0, π0, π0, . . .). A Markov policy is called deterministic if there is a function ft(i) ∈ A such
that

P{At = a|Xt = i} =

{
1 if a = ft(i)

0 otherwise.

Whenever action a taken from state i at stage t, a finite cost ct(i, a) is incurred. Consequently it
is possible to define a total expected cost vπt (i) obtained from time t to the final stage T following
policy π; this is called the value function

vπt (i) = Eπ

[
T∑
s=t

cs(Xs, As)
∣∣∣Xt = i

]
, i ∈ S0 (1)

where Eπ is the expectation operator following the probability distribution associated with policy
π. The problem is to find the policy π ∈ Π, that maximizes the objective function shown above.

v∗t (i) = inf
π∈Π

vπt (i).

Such optimal value function can be shown to satisfy Bellman’s optimality equation

v∗t (i) = min
a∈At(i)

{
ct(i, a) +

∑
j∈St(i,a)

pijt(a)v∗t+1(j)

}
, i ∈ S, t = 0, 1, . . . , T − 1. (2)

where At(i) is the set of feasible actions that can be taken from state i at stage t and St(i, a) is the
set of reachable states from state i taking action a at stage t. Observe that equation (2) implies an
algorithm to solve the optimal value function, and consequently the optimal policy. It starts from
some final values of vT (i) and solves backward the optimal decisions for the other stages. Since
the action space At is finite, the Bellman equation shows that it is possible to find a deterministic
decision rule ft(i) (and hence a deterministic policy) that is optimal, by choosing in every stage in
every state the action that maximizes the right hand side (breaking ties arbitrarily).

3

2.2 Infinite Horizon Problems

Consider a discrete space discrete time bivariate random process {(Xt, At), t ∈ N}. Notice the
time horizon is now infinite. Solving a general problem like this is difficult unless we make some
assumptions about the regularity of the system. In particular we will assume that the the system is
time homogeneous, this means that at every stage the space state and action space remain constant
and the transition probabilities are independent of time pijt(a) = pij(a) = P{Xt+1 = j|Xt =
i, At = a} for all t = 0, 1, Costs are also time homogeneous so ct(i, a) = c(i, a) stands for
the cost incurred when action a is taken from state i. However, it is customary to define two
objective functions, besides total cost: discounted cost, and average cost. We will explain these
three problems in the next subsections.

2.2.1 Discounted Cost

In the discounted cost problem the costs in the first stages are more important than the later ones.
In particular, a cost incurred at time t is assumed to have a present value αtr(i, a), where 0 < α < 1
is a discount factor. If the interest per period is r then α = 1/(1+r). The total expected discounted
cost gives rise to a value function under policy π defined as

vπα(i) = Eπ

[∞∑
t=0

αtc(Xt, At)
∣∣∣X0 = i

]
, i ∈ S (3)

In this case, the optimal value function is

v∗α(i) = inf
π∈Π

vπα(i),

and it can be shown that it satisfies the following Bellman’s optimality equation

v∗α(i) = min
a∈A(i)

{
c(i, a) + α

∑
j∈S(i,a)

pij(a)v∗α(j)

}
, i ∈ S, (4)

where A(i) is the set of feasible actions from state i in any stage and S(i, a) is the set of reachable
states. Notice that since t does not appear in the equation it is possible to find an stationary policy
that is optimal.

There are various algorithms for solving the discounted cost problem. One of them is almost
implicit in equation (4). The algorithm is called Value Iteration and begins with some initial values

v
(0)
α (i) and iteratively defines the n-th iteration value function v

(n)
α (i) in terms of v

(n−1)
α (i) according

to

v(n)
α (i) = min

a∈A(i)

{
c(i, a) + α

∑
j∈S(i,a)

pij(a)v(n−1)
α (j)

}
, i ∈ S.

It can be shown that for 0 < α < 1 the algorithm converges regardless of the initial function. For
further details see Bertsekas[2] or Stidham[6]. If the algorithm has stopped after N iterations ,
then the recommended policy will be

f(i) = argmin
a∈A(i)

{
c(i, a) + α

∑
j∈S(i,a)

pij(a)v(N)
α (j)

}
, i ∈ S.

A policy is said to be ε-optimal if its corresponding value function satisfies max |vβ(i)− v∗(i)| < ε.

If the previous algorithm stops when max |v(n)
α (i)−v(n−1)

α (i)| < ε(1−α)/(2α)) then it can be shown
that the stationary policy π = (f, f, . . .) is ε-optimal.

4

The Policy Iteration algorithm starts with a deterministic policy f(i) and through a series of
iterations find improving policies. In every iteration for a given policy f(i) its corresponding value
function is computed solving the following linear system

vf (i) = c(i, f(i)) + α
∑

j∈S(i,f(i))

pij(f(i))vf (j), i ∈ S, (5)

where vf (i) if the total expected discounted cost under the deterministic stationary policy π =
{f, f, f, . . .}. A new policy f ′ is found through the following policy-improvement step

f ′(i) = argmin
a∈A(i)

{
c(i, f(i)) + α

∑
j∈S(i,a)

pij(f(i))vf (j)

}
, i ∈ S.

After a succession of value computation and policy improvement steps the algorithm stops when no
further improvement can be obtained. This guarantees an optimal solution instead of an ε-optimal
one, but can be very time consuming to solve the systems. The discounted cost problem can also
be solved with a linear program. See [6] for details.

2.2.2 Total Cost

The value function in the total cost case is given by

vπ(i) = Eπ

[∞∑
t=0

c(Xt, At)
∣∣∣X0 = i

]
, i ∈ S

and the optimal value function is
v∗(i) = sup

π∈Π
vπ(i)

The total cost problem can be thought of as a discounted cost with α = 1. However, the algorithms
presented do not work in this case. The policy evaluation in the policy iteration algorithm fails
since the linear system (5) is always singular; and there is no guarantee that the value iteration
algorithm converges unless we impose some additional condition. This is due to the fact that the
total cost might be infinite. One of the conditions is to assume that there exists an absorbing
state with zero-cost and that every policy eventually reaches it. (Weaker conditions can also be
used, see [2]). This problem is also called the Stochastic Shortest Path’indexStochastic Shortest
Path problem, since since if expected total cost can be thought of as the minimal expected cost
accumulated before absorption in a graph with random costs.

2.2.3 Average Cost

In an ergodic chain that reaches stable state, the steady state probabilities are independent of the
initial state of the system. Intuitively, the average cost per stage should be a constant regardless
of the initial state. So the value function is

vπ(i) = lim
T→∞

1

T
Eπ

[
T∑
t=0

c(Xt, At)
∣∣∣X0 = i

]
, i ∈ S

and the optimal value function is the same for every state

g = v∗(i) = inf
π∈Π

vπ(i)

5

The average cost per stage problem can be obtained by solving the following linear program

g = min
xia

∑
i∈S

∑
a∈A(i)

c(i, a)xia (6a)

s.t.
∑

a∈A(j)

∑
{i:j∈S(i,a)}

pij(a)xia =
∑
a∈A(i)

xja j ∈ S (6b)

and
∑
i∈S

∑
a∈A(i)

xia = 1, (6c)

where the solution is interpreted as

xia = lim
t→0

P{Xt = i, At = a} i ∈ S, a ∈ A(i).

The equation (6a) is the average cost per transition in steady state, (6b) are analogous to the
balance equations in every markovian system and (6c) is the normalization condition. The optimal
policy can be obtained after the LP has been solved as

πi(a) = P{At = a|Xt = i} =
xia∑

b∈A(i) xib
. i ∈ S, a ∈ A(i)

It can be shown that for every i ∈ S the is only one a ∈ A(i) that is positive, so the optimal policy
is always deterministic. There is also an iterative solution based on a modification of the value
iteration algorithm. See [5] for details.

Remark 1 It may seem to the reader that the infinite horizon admits more type of cost functions
that the finite counterpart. That is not the case. The fact that the cost function depends on t, allows
us to define a discounted cost as ct(i, a) = αtc(i, a), and an average cost as ct(i, a) = 1

T c(i, a).

2.3 Deterministic Dynamic Programming

This is a particular case of the finite horizon problem defined earlier. When the set of reachable
states St(i, a) has only one state for all t ∈ N, i ∈ S, a ∈ A, then it is clear that all the probability
of reaching this state has to be 1.0, and 0 for every other state. This would be a deterministic
transition. So it is possible to define a transition function h : S ×A×N→ S, that assigns to each
state and action to be taken at the given stage, a unique destination state. Under this conditions,
the Bellman equation would look like

vt(i) = min
a∈At(i)

{
ct(i, a) + vt+1

(
h(i, a, t)

)}
, i ∈ S, t ∈ N.

Naturally, there are also infinite horizon counterparts as in the probabilistic case.

2.4 Main modeling elements in MDP

Recall the Bellman equation (2). As explained before, Xt and At are the state and the action taken
at stage t respectively. The set At(i) is the set of actions that can be taken from state i at stage t.
So the optimal action is selected only from this feasible action set, for the statement to make sense.
In the equation, the first cost is taken, and then it is added to the expected future value function.

The expected future value function is a sum over the states in St(i, a). This is the set of
reachable states from state i given that action a is taken at stage t. If this set was not defined,
then the sum would be over all the possible states S, and its value would be the same, only that
there would be many probabilities equal to zero.

As a summary, if the elements in Table 1 are clearly identified, then it is possible to say that
the Markov Decision Process has been defined.

6

Element Mathematical
representation

States Xt ∈ S
Actions At ∈ A
Feasible actions At(i)
Reachable states St(i, a)

Transition probabilities pijt(a)

Costs ct(i, a)

Table 1: Main elements

3 Framework Design

As stated before, the intention is to make this framework as easy to use as possible. An analogy
is stated between the mathematical elements presented above and the computational elements
that will be explained. There is first a general overview of the framework, and specific details of
each structure will be presented afterwards. This first part should be enough to understand the
examples.

The framework is divided in two packages. The modeling package is called jmdp, and the solving
package is jmpd.solvers. The user does not need to interact with this second one, because a standard
solver is defined for every type of problem. However, as the user gains experience he mights want
to fine-tune the solvers or even define his/her own solver by using the package jmdp.solvers.

The following steps will show how to model a problem. An inventory problem will be used.

1. Defining the states. The first thing to do when modeling a problem, is to define which will
be the states. Each state Xt is represented by an object or class, and the user must modify
the attributes to satisfy the needs of each problem. The class State is declared abstract and
can not be used explicitly; the user must extend class State and define his own state for each
type of problem. Once each state has been defined, a set of states S can be defined with
the class States. For example, in an inventory problem, the states are inventory levels. The
following code defines such a class. It extends the class PropertiesState, which defines the state
as an array of integers. In this case the array only has one position, which represents the
inventory level.

public class InvLeve l extends P r o p e r t i e s S t a t e {
public InvLeve l (int k) {

super (new int [] {k }) ;
}
public int getLeve l () {

return prop [0] ;
}
@Override
public St r ing label () {

return ” Level ” + getLeve l () ;
}

}

2. Defining the actions.The next step is to define the actions of the problem. Again, each
action At is represented by an object called Action, and this is an abstract class that must be
extended in order to use it. In an inventory problem, the actions that can be taken from each
state are orders placed. It has a constructor, and, very importantly implements compareTo()

to establish a total ordering among the actions. If no comparator is provided, then the sorting
will be made according to the name, which might be very inefficient in real problems.

7

public class Order extends Action {
private int s i z e ;
Order (int k) {

s i z e = k ;
}
@Override
public St r ing label () {

return ”Order ” + s i z e + ” Units ” ;
}
public int compareTo (Action a) {

i f (a instanceof Order)
return (s i z e − ((Order) a) . s i z e) ;

else
throw new I l l ega lArgumentExcept ion (

”Comparing with d i f f e r e n t type o f Action . ”) ;
}
public f ina l int g e t S i z e () {

return s i z e ;
}

}

3. Defining the problem. In some way, the states and actions are independent of the problem
itself. The rest of the modeling corresponds to the problem’s structure that is also represented
by an object. In this case, the object is more complex than the ones defined earlier, but it
combines the important aspects of the problem. The classes that represent the problem are
also abstract classes and must be extended in order to be used. See table (2) for reference on
which class to extend for each type of problem.

Type of Problem Class to be extended

Finite Horizon Dynamic Programming Problem FiniteDP<S,A>

Infinite Horizon Dynamic Programming Problem InfiniteDP<S,A>1

Finite Horizon MDP FiniteMDP<S,A>

Infinite Horizon MDP InifiniteMDP<S,A>

Table 2: Types of Problems

public class InventoryProblem extends FiniteMDP<InvLevel , Order>{

}

Once one of these classes is extended in a blank editor file, compilation errors will prompt
up. This doesn’t mean the user has done anything wrong, it is just a way to make sure all
the requisites are fulfilled before solving the problem. Java has a feature called generics that
allows safe type transitions. In the examples, whenever S is used, it stands for S extends State

that is the class being used to represent a state. In the same way A is the representation of
A extends Action. In the inventory example, class FiniteMDP<S,A> will be extended and the
editor will indicate the user that there are compilation errors because some methods have
not yet been implemented. This means the user must implement this methods in order to
model the problem, and also for the program to compile. It is necessary that the state and
the action that were defined earlier are indicated in the field <S,A> as state and action as
shown in the example. This will allow the methods to know that this class is using these two
as states and actions respectively.

8

4. Feasible actions. The first of these methods is public Actions getActions(S i, int t). For a
given state i this method must return the set of feasible actions A(i) that can be taken at
stage t. Notice that the declaration of the method takes element i as of type S but in the
concrete example, the compiler knows the states that are being used are called InvLevel and
so changes the type.

public Actions getAct ions (InvLeve l i , int t){
Actions<Order> ac t i onSe t = new Act ionsCo l l e c t i on<Order >() ;
for (int n=0; n<=K−i . l e v e l ; n++){

ac t i onSe t . add (new Order (n)) ;
}
return ac t i onSe t ;

}

The example procedure returns the actions corresponding to the set {0, 1, . . . ,K − i}, the
user can declare an empty set called actionSet of type ActionsCollection<Order>, which is an
easy-to-use extension of Actions<A>. The generics use is indicating that the set will store
objects of type Order. Then for each iteration of the for cycle, create a new order and this
new action is added to the set. After adding all the actions needed, the method returns the
set of actions.

5. Reachable states. The second method in the class FiniteMDP<S,A> that must be im-
plemented public States reachable(S i , A a, int t) indicates the set of reachable states St(i, a)
from state i and given that action a is taken at stage t . The example shows how to de-
fine the set of states {0, 1, . . . , a + i}. First declare an empty set called statesSet of type
StatesCollection<InvLevel> which is an easy-to-use extension of States<S>, that indicates this
set will store objects of type InvLevel. Then a for cycle adds a state for each value between 0
and a+ i.

public Sta te s r eachab l e (InvLeve l i , Order a) {
States<InvLevel> s t a t e s S e t = new S t a t e s C o l l e c t i o n<InvLevel >() ;
for (int n=0;n<=a . s i z e+i . l e v e l ; n++)

s t a t e s S e t . add (new InvLeve l (n)) ;
return s t a t e s S e t ;

}

6. Transition Probabilities. The method public double prob(S i, S j, A a) is still pending to
be implemented and represents the transition probabilities pijt(a).

7. Costs. The final method is the one representing the cost ct(i, a) received by taking action
a from state i represented by the method public double immediateCost(S i, A a). Once these
methods are implemented the class should compile.

8. The main method. In order to test the model and solve it, the class may also have a main

method. This is of course not necessary, since the class can be called from other classes
or programs provided you have been careful to declare it constructor public. The following
example shows that the name of the class extending FiniteMDP is InventoryProblem so the main

method must first declare an object of that type, with the necessary parameters determined
in the constructor method. Then the solve () method must be called from such and the
problem will call a default solver, solve the problem, store the optimal solution internally.
You can obtain information about the optimal policy and value functions by calling the
getOptimalPolicy() and getoptimalValue() methods. There is also a convenience method called
printSolution() which prints the solution in standard output.

9

public stat ic void main (St r ing args []) {

InventoryProblem prob = new InventoryProblem (maxInventory ,
maxItemsPerOrder , truckCost , holdingCost , theta) ;

prob . s o l v e ()
prob . p r i n t S o l u t i o n ()
}

MDP

Actions

Action

Actions

Action

Policy

DecisionRule

Policy

DecisionRule

States

State

States

State

Solver

MyState

MyAction

MyProblem

Solver solver
Policy policy
States states

•Actions getActions(State i)
•States reachable(State i, Action a)
•double prob(State i, State j, Action a)
•double immediateCost(State i, Action a)

Figure 2: Problem’s structure.

Element Mathematical Computational
representation representation

States Xt ∈ S public class MyState extends State

Actions At ∈ A public class MyAction extends Action

Process {Xt, At} public class MyProblem extends FiniteMDP<S,A>

Feasible actions At(i) public Actions getActions(S i, int t)

Reachable states St(i, a) public States reachable(S i , A a, int t)

Transition probabilities pijt(a) public double prob(S i, S j, A a, int t)

Costs ct(i, a) public double immediateCost(S i, A a, int t)

For details on the construction of specifc sets, modifying the solver or solver options, see the
Java documentation and the Advanced Features section.

4 Examples

This sections shows some problems and their solution with JMDP in order to illustrate its use. The
examples cover the usage of the FiniteDP, FiniteMDP, and DTMDP classes.

4.1 Deterministic inventory problem

Consider a car dealer selling identical cars. All the orders to the distributor have to be placed
on Friday eve and arrive on Monday morning before opening. The car dealer is open Monday to

10

Friday. Each car is bought at USD $20.000 and sold at USD$22.000. A transporter charges a fixed
fee of USD$500 per truck for carrying the cars from the distributor to the car dealer, and each
truck can carry 6 cars. The exhibit hall has space for 15 cars. If a customer orders a car and there
are not cars available, the car dealer gives him the car a soon as it gets with a USD$1000 discount.
The car dealer does not allow more than 5 pending orders of this type. Holding inventory implies
a cost of capital of 30% annually. The marketing department has handed in the following demand
forecasts, for the next 12 weeks, shown in table (3).

Weeks

t 1 2 3 4 5 6 7 8 9 10 11 12

Dt 10 4 3 6 3 2 0 1 7 3 4 5

Table 3: Demand forecast.

Let’s first formulate the mathematical model, and then the computational one. The parameters
in the word problem are in Table 4.

K Fixed cost per truck.
c Unit cost.
p Unit price.
Dt Demand at week t.
h Holding cost per unit per week.
b Backorder cost.
M Maximum exhibit hall capacity.
B Maximum backorders allowed.
L Truck’s capacity.
T Maximum weeks to model.

Table 4: Parameters

The problem will be solved using dynamic programming to determine the appropriate amount
to order in each week in order to minimize the costs. The problem has a finite horizon and is
deterministic.

We define a new class for the problem, define the parameters and provide a constructor in the
code below.

public class WagnerWhitin extends FiniteDP<InvLevel , Order> {

int l a s tS tage , maxInventory , maxBackorders , t ruckS i z e ;
double K, b , h , pr i c e , co s t ;
int [] demand ;

public WagnerWhitin (int i n i t i a l I n v e n t o r y , int l a s tS tage , int maxInventory ,
int maxBackorders , int t ruckS ize , double K, double b , double pr i ce ,
double cost , double h , int [] demand) {

super (new StatesSet<InvLevel>(new InvLeve l (i n i t i a l I n v e n t o r y)) ,
l a s t S t a g e) ;

this . maxInventory = maxInventory ;
this . maxBackorders = maxBackorders ;
this . t ru ckS i z e = t ruckS i z e ;
this .K = K;
this . b = b ;
this . h = h ;
this . demand = demand ;

11

this . p r i c e = p r i c e ;
this . c o s t = cos t ;
i n i t () ;

}
}

Now we follow the steps described in Section 3.

1. States. Each state Xt is the inventory level at each stage t, where the stages are the weeks.
When there are backorders, they will be denoted as a negative inventory level. The set of
states S = {−B, . . . , 0, . . . ,M} are all the levels between the negative maximum backorders
and the maximum inventory level. We use the InvLevel class defined in Section 3.

2. Actions. Each action At is the order placed in each stage t. The complete set of actions are
the orders from 0 to the addition of the maximum exhibit hall’s capacity and the maximum
backorders allowed. A = {0, . . . , B +M}. We use the Order class defined in Section 3.

3. Feasible Actions. For each state i the feasible actions that can be taken are those that will
not exceed the exhibit hall’s capacity. Ordering 0 is the minimum order and is feasible in
every state. The maximum order feasible is M − i, so the feasible set of actions for each state
i is At(i) = {0, . . . ,M − i}. We define the feasibleActions method below.

@Override
public Actions<Order> f e a s i b l e A c t i o n s (InvLeve l i , int t) {

ActionsSet<Order> ac t i onSe t = new ActionsSet<Order >() ;
int min order = Math . max(−maxBackorders − i . g e tLeve l ()

+ demand [t] , 0) ;
int max order = maxInventory − i . g e tLeve l () + demand [t] ;
for (int n = min order ; n <= max order ; n++) {

ac t i onSe t . add (new Order (n)) ;
}
return ac t i onSe t ;

}

4. Destination. The destination state when action a is taken from state i is the sum of the cars
in that state and the cars that are ordered, minus the cars that are sold. h(i, a, t) = i+a−Dt.
We define the destination method below.

@Override
public InvLeve l d e s t i n a t i o n (InvLeve l i , Order a , int t) {

int o = a . g e t S i z e () ;
int i L e v e l = i . ge tLeve l () ;
return new InvLeve l (Math . max(i L e v e l + o

− demand [t] , −maxBackorders)) ;
}

5. Costs. Finally, the cost incurred depends on various factors. The ordering cost is only charged
when the order is positive, and charged per truck. The holding cost is charged only when
there is positive stock, and the backorder cost charged only when there is negative stock.
There is finally a profit for selling each car given by the difference between price and cost.

OC(a) =
⌈ a
L

⌉

HC(i) +BC(i) =

{
−ib if i ≤ 0
ih if i > 0

12

rt(i, a) = OC(a) +HC(i) +BC(i) + (p− c)Dt

We implement this using a few methods for the intermediate calculations.

private double hold ingCost (int x) {
return (x > 0) ? h ∗ co s t ∗ x : 0 . 0 ;

}
private double orderCost (int x) {

return (x > 0) ? Math . c e i l ((double) x / t ruckS i z e) ∗ K : 0 . 0 ;
}
double backorderCost (int x) {

return (x < 0) ? −b ∗ x : 0 . 0 ;
}
double l o s tOrderCost (int x , int t) {

return (x + maxBackorders < demand [t]) ? (p r i c e − co s t)
∗ (demand [t] − x − maxBackorders) : 0 . 0 ;

}
@Override
public double immediateCost (InvLeve l i , Order a , int t) {

int s = i . ge tLeve l () ;
int o = a . g e t S i z e () ;
return l o s tOrderCost (o , t) + orderCost (o) + hold ingCost (s + o)

+ backorderCost (s + o) ;
}

Finally, we write a main method to define an instance of the problem, generate the model and
invoke the solver.

public stat ic void main (St r ing a []) throws Exception {
int l a s t S t a g e = 12 ;
int maxInventory = 15 ;
int maxBackorders = 5 ;
int t ruckS i z e = 6 ;
double K = 500 ;
double b = 2000 ;
double p = 22000;
double c = 20000 ;
double h = Math . pow (1 . 3 , 1 . 0 / 52) − 1 . 0 ;
int [] demand = new int [] { 10 , 4 , 3 , 6 , 3 , 2 , 0 , 1 , 7 , 3 , 4 , 5 } ;

WagnerWhitin prob = new WagnerWhitin (0 , l a s tS tage , maxInventory ,
maxBackorders , t ruckS ize , K, b , p , c , h , demand) ;

F in i t eSo lv e r<InvLevel , Order> theSo lve r = new Fin i t eSo lv e r<InvLevel ,
Order>(prob) ;

prob . s e t S o l v e r (theSo lve r) ;
prob . s o l v e () ;
prob . g e tSo lv e r () . setPr intValueFunct ion (true) ;
prob . p r i n t S o l u t i o n () ;
prob . getOptimalCost (0) ;

}

This example can be found in the jMarkov distribution as WagnerWhitin.class, in the examples/jmdp

folder. The full implementation includes additional methods not listed here. We invite you to ex-
plore the code yourself!

13

4.2 Finite horizon stochastic inventory problem

Consider the car dealer in the past example. The car dealer selling identical cars. All the orders
placed to the distributor arrive on Monday morning. The car dealer is open Monday to Friday.
Each car is bought at USD $20.000 and sold at USD$22.000. A transporter charges a fixed fee of
USD$500 per truck for carrying the cars from the distributor to the car dealer, and each truck can
carry 6 cars. The exhibit hall has space for 15 cars. If a customer orders a car and there are not
cars available, the car dealer gives him the car a soon as it gets with a USD$1000 discount. The
car dealer does not allow more than 5 pending orders of this type. Holding inventory implies a cost
of capital of 30% annually. Now instead of receiving demand forecasts, marketing department has
informed that the demand follows a Poisson process.

The parameters of the problem are shown in table 5

K Fixed cost per truck.
c Unit cost.
p Unit price.
h Holding cost per unit per week.
b Backorder cost.
M Maximum exhibit hall capacity.
B Maximum backorders allowed.
L Truck’s capacity.
T maximum weeks to model.
Dt Random variable that represents the weekly demand.
θ Demand’s mean per week t.
pn P{Dt = n}
qn P{Dt >= n}

Table 5: Parameters

The problem is a finite horizon stochastic problem. Markov Decision Processes can be used in
order to minimize the costs. We define a new class for the problem, define the parameters and
provide a constructor in the code below.

public class StochasticDemand extends FiniteMDP<InvLevel , Order> {

int l a s tS tage , maxInventory , maxBackorders , t ruckS i z e ;
double K, b , h , theta , pr i ce , c o s t ;
double [] demandProbabil ity , demandCumulativeProbabil ity ;

public StochasticDemand (States<InvLevel> i n i t S e t , int l a s tS tage ,
int maxInventory , int maxBackorders , int t ruckS ize , double K,
double b , double pr i ce , double cost , double h , double theta) {

super (i n i t S e t , l a s t S t a g e) ;
this . maxInventory = maxInventory ;
this . maxBackorders = maxBackorders ;
this . t ru ckS i z e = t ruckS i z e ;
this .K = K;
this . b = b ;
this . p r i c e = p r i c e ;
this . c o s t = cos t ;
this . h = h ;
this . theta = theta ;
i n i t i a l i z e P r o b a b i l i t i e s () ;

}

14

}

1. States. Each state Xt is the inventory level at each stage t, where the stages are the weeks.
When there are backorders, they will be denoted as a negative inventory level. The set of
states S = {−B, . . . , 0, . . . ,M} are all the levels between the negative maximum backorders
adn the maximum inventory level. We use the InvLevel class defined in Section 3.

2. Actions. Each action At is the order placed in each stage t. The complete set of actions are
the orders from 0 to the addition of the maximum exhibit hall’s capacity and the maximum
backorders allowed. A = {0, . . . , B +M}. We use the Order class defined in Section 3.

3. Feasible Actions. For each state i the feasible actions that can be taken are those that will
not exceed the exhibit hall’s capacity. Ordering 0 is the minimum order and is feasible in
every state. The maximum order feasible is M − i, so the feasible set of actions for each state
i is At(i) = {0, . . . ,M − i}. We define the feasibleActions method below.

@Override
public Actions<Order> f e a s i b l e A c t i o n s (InvLeve l i , int t) {

int max = maxInventory − i . g e tLeve l () ;
Order [] vec = new Order [max + 1] ;
for (int n = 0 ; n <= max ; n++) {

vec [n] = new Order (n) ;
}
return new ActionsSet<Order>(vec) ;

}

4. Reachable States. The minimum reachable state when action a is taken from state i would
be −B, when the demand is maximum (b + i). The maximum reachable state when action
a is taken from state i is i when the demand is minimum (0). So the set of reachable states
are all the states ranging between these two: St(i, a) = {−B, . . . , i}. We define the reachable

method below.

@Override
public States<InvLevel> r eachab l e (InvLeve l i , Order a , int t) {

StatesSet<InvLevel> s t a t e s S e t = new StatesSet<InvLevel >() ;
for (int n = −maxBackorders ; n <= i . ge tLeve l () + a . g e t S i z e () ; n++) {

s t a t e s S e t . add (new InvLeve l (n)) ;
}
return s t a t e s S e t ;

}

5. Costs. The net profit (minus cost) obtained depends on various factors. The ordering cost is
only charged when the order is positive, and charged per truck.

OC(a) =
⌈ a
L

⌉
The holding cost is charged only when there is positive stock, and the backorder cost charged
only when there is negative stock.

HC(i) +BC(i) =

{
−ib if i ≤ 0
ih if i > 0

15

Finally, there is an expected lost sales cost (Using x = i+ a+B):

E[Dt − x]+ =

∞∑
d=x+1

(
d− x

)
pd

=
∞∑

d=x+1

dpd −
∞∑

d=x+1

xpd

=
∞∑

d=x+1

d
θde−θ

d!
− x

∞∑
d=x+1

pd

= θ
∞∑

d=x+1

θd−1e−θ

(d− 1)!
− xqx+1

= θ
∞∑

d=x+1

pd−1 − xqx+1

= θ

∞∑
d=x

pd − xqx+1

= θ(qx)− x(qx − px)

= θ(qx − px)− xqx

We implement this using a few methods for the intermediate calculations.

double hold ingCost (int x) {
double temp = (x > 0) ? h ∗ co s t ∗ x : 0 . 0 ;
return temp ;

}
double orderCost (int x) {

double temp = (x > 0) ? Math . c e i l ((new I n t e g e r (x)) . doubleValue ()
/ t ruckS i z e)∗ K : 0 . 0 ;

return temp ;
}
double backorderCost (double x) {

return (x < 0) ? −b ∗ x : 0 . 0 ;
}
double l o s tOrderCost (int x) {

int mB = maxBackorders ;
double expectedBackorders = 0 ;
for (int n = Math . max(x + 1 , 0) ; n <= x + mB; n++)

expectedBackorders += (n − x) ∗ demandProbabil ity [n] ;
double expectedLostDemand = demandCumulativeProbabil ity [x + mB]

∗ (theta − x − mB) + (x + mB) ∗ demandProbabil ity [x + mB] ;
return (p r i c e − co s t) ∗ expectedLostDemand

+ backorderCost(−expectedBackorders) ;
}
@Override
public double immediateCost (InvLeve l i , Order a , int t) {

int i L e v e l = i . ge tLeve l () ;
int o r d e r S i z e = a . g e t S i z e () ;
double toReturn = orderCost (o r d e r S i z e)

+ hold ingCost (i L e v e l)
+ lostOrderCost (i L e v e l + o r d e r S i z e) ;

return toReturn ;

16

}

Finally, we write a main method to define an instance of the problem, generate the model and
invoke the solver.

public stat ic void main (St r ing a []) throws Exception {
int l a s t S t a g e = 12 ;
int maxInventory = 15 ;
int maxBackorders = 5 ;
int t ruckS i z e = 6 ;
int K = 500 ;
double b = 1000 ;
double h = 0 .0050582 ;
double theta = 4 ;
double p r i c e = 22000;
double co s t = 20000 ;
InvLeve l i n i t i a l = new InvLeve l (0) ;
States<InvLevel> i n i t S e t = new StatesSet<InvLevel>(i n i t i a l) ;

StochasticDemand pro = new StochasticDemand (i n i t S e t , l a s tS tage ,
maxInventory , maxBackorders , t ruckS ize , K, b , pr i ce , cost , h ,
theta) ;

pro . s o l v e () ;
pro . g e tSo l v e r () . setPr intValueFunct ion (true) ;
pro . p r i n t S o l u t i o n () ;

}

This example can be found in the jMarkov distribution as StochasticDemand.class, in the examples/jmdp

folder. The full implementation includes additional methods not listed here, for example, to gen-
erate the Poisson probabilities. We invite you to explore the code yourself!

4.3 Infinite horizon stochastic inventory problem

Consider the car dealer in the past example. The car dealer selling identical cars. All the orders
placed to the distributor arrive on Monday morning. The car dealer is open Monday to Friday.
Each car is bought at USD $20.000 and sold at USD$22.000. A transporter charges a fixed fee of
USD$500 per truck for carrying the cars from the distributor to the car dealer, and each truck can
carry 6 cars. The exhibit hall has space for 15 cars. If a customer orders a car and there are not
cars available, the car dealer gives him the car a soon as it gets with a USD$1000 discount. The
car dealer does not allow more than 5 pending orders of this type. Holding inventory implies a cost
of capital of 30% annually. Now instead of receiving demand forecasts, marketing department has
informed that the demand follows a Poisson process.

The parameters of the problem are shown in table (6).
The problem is a finite horizon stochastic problem. Markov Decision Processes can be used in

order to minimize the costs. We define a new class for the problem, define the parameters and
provide a constructor in the code below.

public class InfStochasticDemand extends DTMDP<InvLevel , Order> {

private int maxInv , maxBO, t ruckS i z e ;
private double truckCost , backorderCost , holdingCost , intRate ,

expDemand , pr i c e , c o s t ;
private double [] demPMF, demCDF, demandLoss1 ;
private boolean i s d i s c = fa l se ;

@SuppressWarnings (”unchecked”)

17

K Fixed cost per truck.
c Unit cost .
p Unit price.
h Holding cost per unit per week.
b Backorder cost.
M Maximum exhibit hall capacity.
B Maximum backorders allowed.
L Truck’s capacity.
Dt Random variable that represents the weekly demand.
θ Demand’s mean per week t.
pn P{Dt = n}
qn P{Dt ≥ n}

Table 6: Parameters

public InfStochasticDemand (int maxInv , int maxBO, int t ruckS ize ,
double truckCost , double backorderCost , double pr i ce , double cost ,
double holdingCost , double intRate , double expDemand ,
boolean discounted) {

super (new StatesSet<InvLevel>(new InvLeve l (0))) ;
this . maxInv = maxInv ;
this .maxBO = maxBO;
this . t ru ckS i z e = t ruckS i z e ;
this . truckCost = truckCost ;
this . backorderCost = backorderCost ;
this . p r i c e = p r i c e ;
this . c o s t = cos t ;
this . ho ld ingCost = holdingCost ;
this . expDemand = expDemand ;
// i n i t S t a t e s () ;
i n i t i a l i z e P r o b a b i l i t i e s () ;
this . i s d i s c = discounted ;
this . intRate = intRate ;
i f (d i scounted)

s e t S o l v e r (new V a l u e I t e r a t i o n S o l v e r (this , intRate)) ;
else

s e t S o l v e r (new R e l a t i v e V a l u e I t e r a t i o n S o l v e r (this)) ;
}

}

1. States. Each state Xt is the inventory level at each stage t, where the stages are the weeks.
When there are backorders, they will be denoted as a negative inventory level. The set of
states S = {−B, . . . , 0, . . . ,M} are all the levels between the negative maximum backorders
and the maximum inventory level. We use the InvLevel class defined in Section 3.

2. Actions. Each action At is the order placed in each stage t. The complete set of actions are
the orders from 0 to the addition of the maximum exhibit hall’s capacity and the maximum
backorders allowed. A = {0, . . . , B +M}. We use the Order class defined in Section 3.

3. Feasible Actions. For each state i the feasible actions that can be taken are those that will
not exceed the exhibit hall’s capacity. Ordering 0 is the minimum order and is feasible in
every state. The maximum order feasible is M − i, so the feasible set of actions for each state
i is At(i) = {0, . . . ,M − i}. We define the feasibleActions method as in the previous example.

18

4. Reachable States. The minimum reachable state when action a is taken from state i would
be −B, when the demand is maximum (b + i). The maximum reachable state when action
a is taken from state i is i when the demand is minimum (0). So the set of reachable states
are all the states ranging between these two: St(i, a) = {−B, . . . , i}. We define the reachable

method as:

@Override
public States<InvLevel> r eachab l e (InvLeve l i , Order a) {

StatesSet<InvLevel> s t a t e s S e t = new StatesSet<InvLevel >() ;
int maxLevel = i . ge tLeve l () + a . g e t S i z e () ;
for (int n = −maxBO; n <= maxLevel ; n++) {

s t a t e s S e t . add (new InvLeve l (n)) ;
}
return s t a t e s S e t ;

}

5. Cost. The net profit obtained depends on various factors. The ordering cost is only charged
when the order is positive, and charged per truck.

OC(a) =
⌈ a
L

⌉
The holding cost is charged only when there is positive stock, and the backorder cost charged
only when there is negative stock.

HC(i) +BC(i) =

{
−ib if i ≤ 0
ih if i > 0

Finally, there is an expected lost sales cost (Using x = i+ a+B):

E[Dt − x]+ =
∞∑

d=x+1

(
d− x

)
pd

=
∞∑

d=x+1

dpd −
∞∑

d=x+1

xpd

=
∞∑

d=x+1

d
θde−θ

d!
− x

∞∑
d=x+1

pd

= θ
∞∑

d=x+1

θd−1e−θ

(d− 1)!
− xqx+1

= θ

∞∑
d=x+1

pd−1 − xqx+1

= θ

∞∑
d=x

pd − xqx+1

= θ(qx)− x(qx − px)

= qx(θ − x) + xpx

We implement this using a few methods for the intermediate calculations.

19

double hold ingCost (int x) {
double totHoldCost = holdingCost + ((i s d i s c) ? intRate ∗ co s t : 0 . 0) ;
return (x > 0) ? totHoldCost ∗ x : 0 . 0 ;

}
double orderCost (int x) {

return truckCost ∗ Math . c e i l ((double) x / t ruckS i z e) + x ∗ co s t ;
}
double backorderCost (double x) {

return (x < 0) ? −backorderCost ∗ x : 0 . 0 ;
}
@Override
public double immediateCost (InvLeve l i , Order a) {

int maxSale = i . ge tLeve l () + a . g e t S i z e () + maxBO;
double expec tedSa l e s = expDemand − demandLoss1 [maxSale] ;
double n e t P r o f i t = p r i c e ∗ expec tedSa l e s − orderCost (a . g e t S i z e ())

− hold ingCost (i . ge tLeve l ()) − backorderCost (i . g e tLeve l ()) ;
return −n e t P r o f i t ;

}

Finally, we write a main method to define an instance of the problem, generate the model and
invoke the solver.

public stat ic void main (St r ing a []) throws So lverExcept ion {
int maxInventory = 25 ;
int maxBackorders = 0 ;
int t ruckS i z e = 4 ;
int truckCost = 1000 ;
double b = 0 ;
double holdCost = 50 ;
double intRate = Math . pow (1 . 3 , 1 / 5 2) ;
double theta = 20 ;
double p r i c e = 1100 ;
double co s t = 500 ;

InfStochasticDemand prob = new InfStochasticDemand (maxInventory ,
maxBackorders , t ruckS ize , truckCost , b , pr i ce , cost ,
holdCost , intRate , theta , fa l se) ;

R e l a t i v e V a l u e I t e r a t i o n S o l v e r<InvLevel , Order> s o l v = new
R e l a t i v e V a l u e I t e r a t i o n S o l v e r<InvLevel , Order>(prob) ;

prob . s e t S o l v e r (s o l v) ;
prob . g e tSo lv e r () . setPr intValueFunct ion (true) ;
prob . s o l v e () ;
prob . p r i n t S o l u t i o n () ;

}

This example can be found in the jMarkov distribution as InfStochasticDemand.class, in the
examples/jmdp folder. The full implementation includes additional methods not listed here, for
example, to generate the Poisson probabilities. We invite you to explore the code yourself!

5 Advanced Features

The sections above were intended to show an easy way to use JMDP. The package has some more
features that make it more flexible and powerful than what was shown above. This section is

20

intended for users that are already familiar with the previous sections and want to customize the
framework according to their specific needs.

5.1 States and Actions

The public abstract class State implements Comparable<State> is declared as an abstract class. As
an abstract class it may not be used directly but must be extended. Abstract classes can’t be used
directly and must be extended.

This class implements Comparable, which implies that objects of type State have some criterion of
order. By default the order mechanism is to order the States according to the String name property.
This is the most general case because allows states such as ”‘Active”’ or ”‘Busy”’ that don’t have
any numerical properties. It is not efficent to organize states in such a way because comparing
Strings is very slow; but this is flexible. In many cases it will be easier to represent the system state
by a vector (i1, i2, . . . , iK) of integers. In this case, it is more efficient to compare states according
to this vector. The class StateArray is an extension of State that has a field called int [] status. This
class changes the Comparable implementation to order the states accorging to status. This is also
an abstract class and must also be extended to be used.

When State objects have to be grouped, for example when the reachable method must return a
set of reachable states, the States<S> structure is the one that handles this operation. This class
is also an abstract class and implements Iterable<S>. There is no restriction on how the user can
store the State objects as long as Iterable<S> is implemented and an public void add(S s) method
is implemented. This means the user can use an array, a list, a set or any other structures. For
beginner users, the class StatesCollection<S> was built to make a faster and easier way to store the
State objects. The StatesCollection<S> class extends States and organizes the objects in a Set from
the java. util . Collections.

It is important to use the generics in a safe mode in the States object and its extensions. The
class is declared as abstract public class States<S extends State> implements Iterable<S>. This
means that Every time a States object is declared, it must specify the type of objects stored in it.
For example: States<MyState> theSet = new StatesCollection<MyState>(); is the right way to ensure
that only objects of type MyState are stored in the object theSet. This also makes the iterator that
the class returns, to iterate over MyState objects.

The behavior of class Action is completely analogous to that of class State. The class is abstract
and must be extended to be used. The default criterion of ordering is alphabetical order of the
name attribute. But there is an ActionArray that can have an integer array stored as properties

representing the action. This objects compare themselves according to the array instead of the
name. The set of actions is called Actions<A extends Action> implements Iterable<A>. This class
does not need to have the add method implemented, but works analogously to class States<S>. For
simplicity, class ActionsCollection<A> stores the objects in a Set from java. util . Collections.

5.2 Decision Rules and Policies

The deterministic decision rules πt as referred in the MDP mathematical model, are functions
that assign a single action to each state. The computational object representing a decision rule
is public final class DecisionRule<S extends State, A extends Action>. Probably the most common
method used by a final user will be public A getAction(S i) which returns the Action assigned to
a State. Remember the generics structure where State and Action are only abstract classes. An
example would be: MyAction a = myDecisionR.getAction(new MyState(s));, where only extensions of
State and Action are being used.

Non stationary problems that handle various stages use a policy π = (π1, π2, . . . , πT) that is
represented by the object public final class Policy<S extends State, A extends Action>. A Policy

stores a DecisionRule for each stage. It may be useful to get the action assigned to a state in

21

a particular stage using the method public A getAction(S i, int t) that used with generics could
look like this: MyAction a = pol.getAction(new Mystate(s), 0); where again State and Action are only
abstract classes that are not used explicitly.

5.3 MDP class

The MDP class is the essence of the problem modeling. This class is extended in order to represent a
Markov decision process or a dynamic programming problem. For each type of problem, a different
extension of class MDP must be extended (See table 2). Remember always to indicate the name of
the objects that represent the states and the actions extending State and Action respectively; these
are indicated as <S> and <A> in the class declaration.

When declaring a new class public class MyProblem extends FiniteMDP<MyState,MyAction>,
various compilation errors pop up. This doesn’t mean that something was done wrong, it is just
to remember the user that some methods must be implemented for the problem to be completely
modeled. A summary of the methods is shown on table (7).

Class Abstract Methods

FiniteDP<S,A> public abstract Actions<A> getActions(S i, int t)

public abstract S destination(S i, A a, int t)

public abstract double immediateCost(S i, A a, int t)

FiniteMDP<S,A> public abstract Actions<A> getActions(S i, int t)

public abstract States<S> reachable(S i, A a, int t)

public abstract double prob(S i, S j, A a, int t)

public abstract double immediateCost(S i, A a, int t)

InfiniteMDP<S,A> public abstract Actions<A> getActions(S i)

public abstract States<S> reachable(S i, A a)

public abstract double prob(S i, S j, A a)

public abstract double immediateCost(S i, A a)

Table 7: Abstract methods.

5.4 Solver classes

The Solver class is a very general abstract class. It requires the implementing class to have a
public void solve() method that reaches a policy that is optimal for the desired problem, and stores
this policy in the Policy <S,A> policy field inside the problem. The current package has a dynamic
programming solver called FiniteSolver, a value iteration solver and a policy iteration solver. The
three of them have convenience methods printSolution() that allow the user to print the solution
in standard output or to a given PrintWriter. For larger models the user might not want to see
the solution in the screen, but rather extract all the information through getOptimalPolicy(), and
getOptimalValueFunction() methods.

5.4.1 FiniteSolver

The public class FiniteSolver<S extends State, A extends Action> extends AbstractFiniteSolver is in-
tended to solve only finite horizon problems. The constructors public FiniteSolver(FiniteMDP<S,A> problem)

only receive problems modeled with FiniteMDP (or FiniteDP) classes, implying that only finite hori-
zon problems can be solved. The objective function is to minimize the total cost presented in
equation (1), in the mathematical model.

22

5.4.2 ValueIterationSolver

The public class ValueIterationSolver<S extends State, A extends Action> implements Solver is the
solver class that maximizes the discounted cost vπα presented in equation (3) on the mathematical
model. The constructor only receives InfiniteMDP<S,A> objects as a problem parameter as shown in
public ValueIterationSolver(InfiniteMDP<S,A> problem, double discountFactor). This shows the class
in only intended to solve infinite horizon, discounted problems.

The algorithm used to solve the problem is the value iteration algorithm that consists on
applying the transformation described on equation (4) repeatedly until the results are ε apart. It
can be proved (see Stidham[6]) that the result will be ε-optimal. The value functions start in 0.0 by
default, but this default can be changed using public void setInitVal(double val), and this may speed
up the convergence of the algorithm. The ε is also an important criterion for the speed convergence
and may be changed from its default value in 0.0001, using public void setEpsilon(double epsilon);
a bigger ε will speed up convergence but will make the approximation less accurate.

The Gauss-Seidel modification presented by Bertsekas[2] is used by default and may be deacti-
vated using public void setGaussSeidel(boolean val). This modification will cause the algorithm to
make less iterations because the value function v(i) is changing faster than without the modifica-
tion. It is also possible to activate the Error Bounds modification presented by Bertsekas[2], that is
deactivated by default. This modification changes the stopping criterion and makes each iteration
faster.

Finally, it is possible to print the final value function for each state on screen using the
public void setPrintValueFunction(boolean val) method. In some cases, for comparison purposes,
it may be useful to be able to see the time it took the algorithm to solve the problem by activating
public void setPrintProcessTime(boolean val). The two last options are deactivated by default.

5.4.3 PolicyIterationSolver

The public class PolicyIterationSolver is also designed to solve only infinite horizon problems and this
is restricted in the arguments of its constructor public PolicyIterationSolver(InfiniteMDP<S,A> problem, double discountFactor)

that only receives InfiniteMDP<S,A> objects as an argument. This solver maximizes the discounted
cost DRv

π presented in equation (3) on the mathematical model. The solver uses the policy itera-
tion algorithm. This algorithm has a step in which a linear system of equation needs to be solved,
so the JMP[3] package is used. This class also allows to print the final value function for each state
on screen using the public void setPrintValueFunction(boolean val) method. The solving time can
be shown by activating public void setPrintProcessTime(boolean val). These two last options are
deactivated by default.

6 Further Development

This project is currently under development, and therefore we appreciate all the feedback we can
receive.

References

[1] Bellman, Richard. Dynamic Programming. Princeton, New Jersey: Princeton University
Press, 1957.

[2] Bertsekas, Dimitri. Dynamic Programming and Optimal Control Belmont, Mas-
sachusetts: Athena Scientific, 1995.

23

[3] Bjorn-Ove, Heinsund. JMP-Sparce Matrix Library in Java, Department of Mathematics,
University of Bergen, Norway, September 2003.

[4] Ciardo, Gianfranco. Tools for Formulating Markov Models in “Computational Probabil-
ity” edited by Winfried Grassman. Kluwer Academic Publishers, USA, 2000.

[5] Puterman, Martin. Markov Decision Processes. John Wiley & Sons Inc.

[6] Stidham, J. Optimal Control of Markov Chains in “Computational Probability” edited
by Winfried Grassman. Kluwer Academic Publishers, USA, 2000.

[7] Van der Linden, Peter. Just Java. The sunsoft Press. 1996

24

	Java and Object Oriented Programming
	Markov Decision Process - The Mathematical Model
	Finite Horizon Problems
	Infinite Horizon Problems
	Discounted Cost
	Total Cost
	Average Cost

	Deterministic Dynamic Programming
	Main modeling elements in MDP

	Framework Design
	Examples
	Deterministic inventory problem
	Finite horizon stochastic inventory problem
	Infinite horizon stochastic inventory problem

	Advanced Features
	States and Actions
	Decision Rules and Policies
	MDP class
	Solver classes
	FiniteSolver
	ValueIterationSolver
	PolicyIterationSolver

	Further Development

