Table of Contents

1 Axiom/Fricas source file

1.1 General case

(95) -> )cl p all
   Compiled code for rule2 has been cleared.
   Compiled code for G has been cleared.
(95) -> η := operator 'η
 
   (95)  η
                                                          Type: BasicOperator
(96) -> G := operator 'G
 
   (96)  G
                                                          Type: BasicOperator
(97) -> rule1 := rule (D(η(t,β),β)==X; D(η(t,β),t)==XD*β; D(η(t,β),[t,β])==XD; η(t,β)==X*β)
 
   (97)  {η  (t,β) == X,η  (t,β) == XD β,η    (t,β) == XD,η(t,β) == X β}
           ,2            ,1               ,1,2
                           Type: Ruleset(Integer,Integer,Expression(Integer))
(98) -> S := G(η(t,β))
 
   (98)  G(η(t,β))
                                                    Type: Expression(Integer)
(99) -> H := -log(S)
 
   (99)  - log(G(η(t,β)))
                                                    Type: Expression(Integer)
(100) -> h := D(H,t)
 
             ,
            G (η(t,β))η  (t,β)
                       ,1
   (100)  - ------------------
                 G(η(t,β))
                                                    Type: Expression(Integer)
(101) -> [D(expr,β) for expr in [S,H,h]]
 
   (101)
                           ,
                          G (η(t,β))η  (t,β)
     ,                               ,2
   [G (η(t,β))η  (t,β), - ------------------,
               ,2              G(η(t,β))

                     ,                                               ,,
         - G(η(t,β))G (η(t,β))η    (t,β) - G(η(t,β))η  (t,β)η  (t,β)G  (η(t,β))
                               ,1,2                  ,1      ,2
       + 
          ,        2
         G (η(t,β)) η  (t,β)η  (t,β)
                     ,1      ,2
    /
                2
       G(η(t,β))
     ]
                                              Type: List(Expression(Integer))
(102) -> [rule1 expr for expr in [S,H,h]]
 
                                       ,
                                  XD βG (X β)

   (102)  [G(X β),- log(G(X β)),- -----------]
                                     G(X β)
                                              Type: List(Expression(Integer))
(103) -> [rule1 D(expr,β) for expr in [S,H,h]]
 
   (103)
                  ,
                XG (X β)
      ,
   [XG (X β), - --------,
                 G(X β)
                    ,,                ,     2             ,
    - X XD β G(X β)G  (X β) + X XD β G (X β)  - XD G(X β)G (X β)

    ------------------------------------------------------------]
                                     2
                               G(X β)
                                              Type: List(Expression(Integer))

1.2 Proportional hazards

(104) -> G(x) == exp(-exp(x))
                                                                   Type: Void
(105) -> S := G(η(t,β))
    Compiling function G with type Expression(Integer) -> Expression(
      Integer) 

                η(t,β)
            - %e
   (105)  %e
                                                    Type: Expression(Integer)
(106) -> H := -log(S)
 
            η(t,β)
   (106)  %e
                                                    Type: Expression(Integer)
(107) -> h := D(H,t)
 
            η(t,β)
   (107)  %e      η  (t,β)
                   ,1
                                                    Type: Expression(Integer)
(108) -> D(G(x),x)
    Compiling function G with type Variable(x) -> Expression(Integer) 

                     x
              x  - %e
   (108)  - %e %e
                                                    Type: Expression(Integer)
(109) -> [rule1 expr for expr in [S,H,h]]
 
                 X β
             - %e      X β        X β
   (109)  [%e       ,%e   ,XD β %e   ]
                                              Type: List(Expression(Integer))
(110) -> [rule1 D(expr,β) for expr in [S,H,h]]
 
                          X β
                 X β  - %e        X β                X β
   (110)  [- X %e   %e       ,X %e   ,(X XD β + XD)%e   ]
                                              Type: List(Expression(Integer))

1.3 Proportional odds

(111) -> G(x) == 1/(1+exp(x))
   Compiled code for G has been cleared.
   1 old definition(s) deleted for function or rule G 
                                                                   Type: Void
(112) -> S := G(η(t,β))
    Compiling function G with type Expression(Integer) -> Expression(
      Integer) 

                1
   (112)  ------------
            η(t,β)
          %e       + 1
                                                    Type: Expression(Integer)
(113) -> H := -log(S)
 
                      1
   (113)  - log(------------)
                  η(t,β)
                %e       + 1
                                                    Type: Expression(Integer)
(114) -> h := D(H,t)
 
            η(t,β)
          %e      η  (t,β)
                   ,1
   (114)  ----------------
              η(t,β)
            %e       + 1
                                                    Type: Expression(Integer)
(115) -> D(G(x),x)
    Compiling function G with type Variable(x) -> Expression(Integer) 

                     x
                   %e
   (115)  - -----------------
               x 2      x
            (%e )  + 2%e  + 1
                                                    Type: Expression(Integer)
(116) -> [rule1 expr for expr in [S,H,h]]
 
                                             X β
               1               1      XD β %e
   (116)  [---------,- log(---------),----------]
             X β             X β         X β
           %e    + 1       %e    + 1   %e    + 1
                                              Type: List(Expression(Integer))
(117) -> [rule1 D(expr,β) for expr in [S,H,h]]
 
                        X β             X β        X β 2                  X β
                    X %e            X %e     XD (%e   )  + (X XD β + XD)%e
   (117)  [- ---------------------,---------,--------------------------------]
                X β 2      X β       X β              X β 2      X β
             (%e   )  + 2%e    + 1 %e    + 1       (%e   )  + 2%e    + 1
                                              Type: List(Expression(Integer))

1.4 Probit

Is there a more canonical approach in Axiom?

(118) -> Φ := operator 'Φ

   (118)  Φ
                                                          Type: BasicOperator
(119) -> φ := operator 'φ
 
   (119)  φ
                                                          Type: BasicOperator
(120) -> rule2 == rule D(Φ(x),x)==φ(x)
                                                                    Type: Void
(121) -> G(x) == Φ(-x)
    Compiled code for G has been cleared.
   1 old definition(s) deleted for function or rule G 
                                                                   Type: Void
(122) -> S := G(η(t,β))
    Compiling function G with type Expression(Integer) -> Expression(
      Integer) 

   (122)  Φ(- η(t,β))
                                                    Type: Expression(Integer)
(123) -> H := -log(S)
 
   (123)  - log(Φ(- η(t,β)))
                                                    Type: Expression(Integer)
(124) -> h := D(H,t)
 
           ,
          Φ (- η(t,β))η  (t,β)
                       ,1
   (124)  --------------------
               Φ(- η(t,β))
                                                    Type: Expression(Integer)
(125) -> rule2 D(G(x),x)
    Compiling function G with type Variable(x) -> Expression(Integer) 
   Compiling body of rule rule2 to compute value of type RewriteRule(
      Integer,Integer,Expression(Integer)) 

   (125)  - φ(- x)
                                                    Type: Expression(Integer)
(126) -> [rule1 rule2 expr for expr in [S,H,h]]
 
                                    XD β φ(- X β)
   (126)  [Φ(- X β),- log(Φ(- X β)),-------------]
                                       Φ(- X β)
                                              Type: List(Expression(Integer))
(127) -> [rule1 rule2 D(expr,β) for expr in [S,H,h]]
 
   (127)
                  X φ(- X β)
   [- X φ(- X β), ----------,
                   Φ(- X β)
                      ,                         2
    - X XD β Φ(- X β)φ (- X β) + X XD β φ(- X β)  + XD Φ(- X β)φ(- X β)

    -------------------------------------------------------------------]
                                         2
                                 Φ(- X β)
                                              Type: List(Expression(Integer))

1.5 Additive hazards

(128) -> G(x) == exp(-x)
   Compiled code for G has been cleared.
   1 old definition(s) deleted for function or rule G 
                                                                   Type: Void
(129) -> S := G(η(t,β))
    Compiling function G with type Expression(Integer) -> Expression(
      Integer) 

            - η(t,β)
   (129)  %e
                                                    Type: Expression(Integer)
(130) -> H := -log(S)
 
   (130)  η(t,β)
                                                    Type: Expression(Integer)
(131) -> h := D(H,t)
 
   (131)  η  (t,β)
           ,1
                                                    Type: Expression(Integer)
(132) -> D(G(x),x)
    Compiling function G with type Variable(x) -> Expression(Integer) 

              - x
   (132)  - %e
                                                    Type: Expression(Integer)
(133) -> [rule1 expr for expr in [S,H,h]]
 
             - X β
   (133)  [%e     ,X β,XD β]
                                              Type: List(Expression(Integer))
(134) -> [rule1 D(expr,β) for expr in [S,H,h]]
 
                 - X β
   (134)  [- X %e     ,X,XD]
                                              Type: List(Expression(Integer))

1.6 Aranda-Ordaz

(135) -> G(x) == exp(-log(θ*exp(x)+1)/θ)
   Compiled code for G has been cleared.
   1 old definition(s) deleted for function or rule G 
                                                                   Type: Void
(136) -> S := G(η(t,β))
    Compiling function G with type Expression(Integer) -> Expression(
      Integer) 

                      η(t,β)
              log(θ %e       + 1)
            - -------------------
                       θ
   (136)  %e
                                                    Type: Expression(Integer)
(137) -> H := -log(S)
 
                  η(t,β)
          log(θ %e       + 1)
   (137)  -------------------
                   θ
                                                    Type: Expression(Integer)
(138) -> h := D(H,t)
 
            η(t,β)
          %e      η  (t,β)
                   ,1
   (138)  ----------------
               η(t,β)
           θ %e       + 1
                                                    Type: Expression(Integer)
(139) -> D(G(x),x)
    Compiling function G with type Variable(x) -> Expression(Integer) 

                           x
                   log(θ %e  + 1)
                 - --------------
              x           θ
            %e %e
   (139)  - ---------------------
                      x
                  θ %e  + 1
                                                    Type: Expression(Integer)
(140) -> [rule1 expr for expr in [S,H,h]]
 
                       X β
               log(θ %e    + 1)
             - ----------------         X β              X β
                       θ        log(θ %e    + 1)  XD β %e
   (140)  [%e                  ,----------------,-----------]
                                        θ            X β
                                                 θ %e    + 1
                                              Type: List(Expression(Integer))
(141) -> [rule1 D(expr,β) for expr in [S,H,h]]
 
   (141)
                         X β
                 log(θ %e    + 1)
               - ----------------
          X β            θ               X β
      X %e   %e                      X %e
   [- ---------------------------, -----------,
                  X β                  X β
              θ %e    + 1          θ %e    + 1
            X β 2                  X β
    XD θ (%e   )  + (X XD β + XD)%e
    ----------------------------------]
          2   X β 2        X β
         θ (%e   )  + 2θ %e    + 1
                                              Type: List(Expression(Integer))

1.7 Other links

The development for other links would be similar.

Author: Mark Clements

Created: 2016-11-26 Sat 19:04

Validate