Table of Contents
1 Axiom/Fricas source file
1.1 General case
(95) -> )cl p all Compiled code for rule2 has been cleared. Compiled code for G has been cleared. (95) -> η := operator 'η (95) η Type: BasicOperator (96) -> G := operator 'G (96) G Type: BasicOperator (97) -> rule1 := rule (D(η(t,β),β)==X; D(η(t,β),t)==XD*β; D(η(t,β),[t,β])==XD; η(t,β)==X*β) (97) {η (t,β) == X,η (t,β) == XD β,η (t,β) == XD,η(t,β) == X β} ,2 ,1 ,1,2 Type: Ruleset(Integer,Integer,Expression(Integer)) (98) -> S := G(η(t,β)) (98) G(η(t,β)) Type: Expression(Integer) (99) -> H := -log(S) (99) - log(G(η(t,β))) Type: Expression(Integer) (100) -> h := D(H,t) , G (η(t,β))η (t,β) ,1 (100) - ------------------ G(η(t,β)) Type: Expression(Integer) (101) -> [D(expr,β) for expr in [S,H,h]] (101) , G (η(t,β))η (t,β) , ,2 [G (η(t,β))η (t,β), - ------------------, ,2 G(η(t,β)) , ,, - G(η(t,β))G (η(t,β))η (t,β) - G(η(t,β))η (t,β)η (t,β)G (η(t,β)) ,1,2 ,1 ,2 + , 2 G (η(t,β)) η (t,β)η (t,β) ,1 ,2 / 2 G(η(t,β)) ] Type: List(Expression(Integer)) (102) -> [rule1 expr for expr in [S,H,h]] , XD βG (X β) (102) [G(X β),- log(G(X β)),- -----------] G(X β) Type: List(Expression(Integer)) (103) -> [rule1 D(expr,β) for expr in [S,H,h]] (103) , XG (X β) , [XG (X β), - --------, G(X β) ,, , 2 , - X XD β G(X β)G (X β) + X XD β G (X β) - XD G(X β)G (X β) ------------------------------------------------------------] 2 G(X β) Type: List(Expression(Integer))
1.2 Proportional hazards
(104) -> G(x) == exp(-exp(x)) Type: Void (105) -> S := G(η(t,β)) Compiling function G with type Expression(Integer) -> Expression( Integer) η(t,β) - %e (105) %e Type: Expression(Integer) (106) -> H := -log(S) η(t,β) (106) %e Type: Expression(Integer) (107) -> h := D(H,t) η(t,β) (107) %e η (t,β) ,1 Type: Expression(Integer) (108) -> D(G(x),x) Compiling function G with type Variable(x) -> Expression(Integer) x x - %e (108) - %e %e Type: Expression(Integer) (109) -> [rule1 expr for expr in [S,H,h]] X β - %e X β X β (109) [%e ,%e ,XD β %e ] Type: List(Expression(Integer)) (110) -> [rule1 D(expr,β) for expr in [S,H,h]] X β X β - %e X β X β (110) [- X %e %e ,X %e ,(X XD β + XD)%e ] Type: List(Expression(Integer))
1.3 Proportional odds
(111) -> G(x) == 1/(1+exp(x)) Compiled code for G has been cleared. 1 old definition(s) deleted for function or rule G Type: Void (112) -> S := G(η(t,β)) Compiling function G with type Expression(Integer) -> Expression( Integer) 1 (112) ------------ η(t,β) %e + 1 Type: Expression(Integer) (113) -> H := -log(S) 1 (113) - log(------------) η(t,β) %e + 1 Type: Expression(Integer) (114) -> h := D(H,t) η(t,β) %e η (t,β) ,1 (114) ---------------- η(t,β) %e + 1 Type: Expression(Integer) (115) -> D(G(x),x) Compiling function G with type Variable(x) -> Expression(Integer) x %e (115) - ----------------- x 2 x (%e ) + 2%e + 1 Type: Expression(Integer) (116) -> [rule1 expr for expr in [S,H,h]] X β 1 1 XD β %e (116) [---------,- log(---------),----------] X β X β X β %e + 1 %e + 1 %e + 1 Type: List(Expression(Integer)) (117) -> [rule1 D(expr,β) for expr in [S,H,h]] X β X β X β 2 X β X %e X %e XD (%e ) + (X XD β + XD)%e (117) [- ---------------------,---------,--------------------------------] X β 2 X β X β X β 2 X β (%e ) + 2%e + 1 %e + 1 (%e ) + 2%e + 1 Type: List(Expression(Integer))
1.4 Probit
Is there a more canonical approach in Axiom?
(118) -> Φ := operator 'Φ (118) Φ Type: BasicOperator (119) -> φ := operator 'φ (119) φ Type: BasicOperator (120) -> rule2 == rule D(Φ(x),x)==φ(x) Type: Void (121) -> G(x) == Φ(-x) Compiled code for G has been cleared. 1 old definition(s) deleted for function or rule G Type: Void (122) -> S := G(η(t,β)) Compiling function G with type Expression(Integer) -> Expression( Integer) (122) Φ(- η(t,β)) Type: Expression(Integer) (123) -> H := -log(S) (123) - log(Φ(- η(t,β))) Type: Expression(Integer) (124) -> h := D(H,t) , Φ (- η(t,β))η (t,β) ,1 (124) -------------------- Φ(- η(t,β)) Type: Expression(Integer) (125) -> rule2 D(G(x),x) Compiling function G with type Variable(x) -> Expression(Integer) Compiling body of rule rule2 to compute value of type RewriteRule( Integer,Integer,Expression(Integer)) (125) - φ(- x) Type: Expression(Integer) (126) -> [rule1 rule2 expr for expr in [S,H,h]] XD β φ(- X β) (126) [Φ(- X β),- log(Φ(- X β)),-------------] Φ(- X β) Type: List(Expression(Integer)) (127) -> [rule1 rule2 D(expr,β) for expr in [S,H,h]] (127) X φ(- X β) [- X φ(- X β), ----------, Φ(- X β) , 2 - X XD β Φ(- X β)φ (- X β) + X XD β φ(- X β) + XD Φ(- X β)φ(- X β) -------------------------------------------------------------------] 2 Φ(- X β) Type: List(Expression(Integer))
1.5 Additive hazards
(128) -> G(x) == exp(-x) Compiled code for G has been cleared. 1 old definition(s) deleted for function or rule G Type: Void (129) -> S := G(η(t,β)) Compiling function G with type Expression(Integer) -> Expression( Integer) - η(t,β) (129) %e Type: Expression(Integer) (130) -> H := -log(S) (130) η(t,β) Type: Expression(Integer) (131) -> h := D(H,t) (131) η (t,β) ,1 Type: Expression(Integer) (132) -> D(G(x),x) Compiling function G with type Variable(x) -> Expression(Integer) - x (132) - %e Type: Expression(Integer) (133) -> [rule1 expr for expr in [S,H,h]] - X β (133) [%e ,X β,XD β] Type: List(Expression(Integer)) (134) -> [rule1 D(expr,β) for expr in [S,H,h]] - X β (134) [- X %e ,X,XD] Type: List(Expression(Integer))
1.6 Aranda-Ordaz
(135) -> G(x) == exp(-log(θ*exp(x)+1)/θ) Compiled code for G has been cleared. 1 old definition(s) deleted for function or rule G Type: Void (136) -> S := G(η(t,β)) Compiling function G with type Expression(Integer) -> Expression( Integer) η(t,β) log(θ %e + 1) - ------------------- θ (136) %e Type: Expression(Integer) (137) -> H := -log(S) η(t,β) log(θ %e + 1) (137) ------------------- θ Type: Expression(Integer) (138) -> h := D(H,t) η(t,β) %e η (t,β) ,1 (138) ---------------- η(t,β) θ %e + 1 Type: Expression(Integer) (139) -> D(G(x),x) Compiling function G with type Variable(x) -> Expression(Integer) x log(θ %e + 1) - -------------- x θ %e %e (139) - --------------------- x θ %e + 1 Type: Expression(Integer) (140) -> [rule1 expr for expr in [S,H,h]] X β log(θ %e + 1) - ---------------- X β X β θ log(θ %e + 1) XD β %e (140) [%e ,----------------,-----------] θ X β θ %e + 1 Type: List(Expression(Integer)) (141) -> [rule1 D(expr,β) for expr in [S,H,h]] (141) X β log(θ %e + 1) - ---------------- X β θ X β X %e %e X %e [- ---------------------------, -----------, X β X β θ %e + 1 θ %e + 1 X β 2 X β XD θ (%e ) + (X XD β + XD)%e ----------------------------------] 2 X β 2 X β θ (%e ) + 2θ %e + 1 Type: List(Expression(Integer))
1.7 Other links
The development for other links would be similar.