Skip to main content
  • Home
  • Development
  • Documentation
  • Donate
  • Operational login
  • Browse the archive

swh logo
SoftwareHeritage
Software
Heritage
Archive
Features
  • Search

  • Downloads

  • Save code now

  • Add forge now

  • Help

Raw File Download

To reference or cite the objects present in the Software Heritage archive, permalinks based on SoftWare Hash IDentifiers (SWHIDs) must be used.
Select below a type of object currently browsed in order to display its associated SWHID and permalink.

  • content
content badge Iframe embedding
swh:1:cnt:98093cd1dee73dbc2e43ddabc202e6bee76e1e90

This interface enables to generate software citations, provided that the root directory of browsed objects contains a citation.cff or codemeta.json file.
Select below a type of object currently browsed in order to generate citations for them.

  • content
Generate software citation in BibTex format (requires biblatex-software package)
Generating citation ...
From HoTT Require Import Basics Types Pointed WildCat
  ExactSequence AbGroups AbSES.

(* Place in Homotopy.ExactSequence. *)
Definition isexact_homotopic_if n {F X Y : pType}
  {i i' : F ->* X} (h : i' ==* i)
  {f f' : X ->* Y} (k : f' ==* f)
  `{IsExact n F X Y i f}
  : IsExact n i' f'.
Proof.
  refine (isexact_homotopic_i n h _).
  exact (isexact_homotopic_f n _ k).
Defined.

(* Place in AbSES.Pullback. *)
Definition abses_pullback_trivial_factors_projection `{Univalence}
  {B B' A : AbGroup} {g : B' $-> B} {E : AbSES B A}
  : pt = abses_pullback g E -> exists phi, g = projection E $o phi.
Proof.
  equiv_intros (equiv_path_abses (E:=pt) (F:=abses_pullback g E)) p.
  destruct p as [phi [p q]].
  exists (grp_pullback_pr1 _ _ $o phi $o ab_biprod_inr).
  apply equiv_path_grouphomomorphism; intro b'; symmetry.
  refine (right_square (abses_pullback_morphism E g) _ @ _).
  exact (ap g (q _)^).
Defined.

(** ** [loops_abses] is a group isomorphism *)

(** The functorial action of [abses_pullback_pmap] on loops. *)
Definition abses_loops_pullback_data `{Univalence} {B B' A : AbGroup} (g : B $-> B')
  : forall p, fmap loops (abses_pullback_pmap (A:=A) g) p
         = equiv_path_abses_iso
             ((abses_pullback_point' g)^$
                $@ (fmap (abses_pullback g) (equiv_path_abses_iso^-1 p)
                      $@ abses_pullback_point' g)).
Proof.
  intro p.
  refine (_ @ abses_path_data_compose_beta _ _).
  refine (_ @ ap011 _ (abses_path_data_V _) (abses_path_data_compose_beta _ _)).
  apply whiskerL.
  apply whiskerR.
  apply ap_abses_pullback.
Defined.

(** Loop spaces of a 1-truncated type are automatically groups. *)
Definition loops_1trunc (X : pType) `{IsTrunc 1 X} : Group.
Proof.
  nrefine (Build_Group (loops X) concat idpath inverse _).
  nrapply Build_IsGroup; repeat split.
  - by apply istrunc_paths.
  - rapply concat_p_pp.
  - rapply concat_1p.
  - rapply concat_p1.
  - rapply concat_Vp.
  - rapply concat_pV.
Defined.

Definition iso_loops_abses `{Univalence} {A B : AbGroup}
  : GroupIsomorphism (ab_hom B A)
      (loops_1trunc (AbSES B A)).
Proof.
  srapply Build_GroupIsomorphism'.
  1: apply loops_abses.
  intros phi psi.
  snrapply (equiv_ap_inv' equiv_path_abses).
  apply path_sigma_hprop.
  apply equiv_path_grouphomomorphism; intros [a b].
  unfold loops_abses.
  rewrite (eissect equiv_path_abses (abses_endomorphism_trivial^-1 (sg_op phi psi))).
  unfold equiv_path_abses.
  nrefine (_ @ ap (fun x => (equiv_path_abses^-1 x).1 _) _).
  2: exact (abses_path_data_compose_beta _ _)^.
  rewrite (equiv_inverse_compose _ _ _).
  nrefine (_ @ ap (fun x => ((equiv_path_abses_data _ _)^-1 x).1 _) _^).
  2: apply eissect.
  cbn.
  apply path_prod'.
  - rewrite grp_unit_l.
    apply associativity.
  - exact (grp_unit_l _)^.
Defined.

(** The inverse of [loops_abses]. *)
Definition loops_abses_inv `{Univalence} {A B : AbGroup}
  : loops (AbSES B A) <~> (B $-> A)
  := abses_endomorphism_trivial oE equiv_path_abses^-1.

(** Under the equivalence [loops_abses], [fmap loops (abses_pullback g)] corresponds to precomposition by [g]. It's easiest to show this using [loops_abses_inv]. *)
Definition abses_loops_pullback_inv `{Univalence} {B B' A : AbGroup} (g : B $-> B')
  : Square (IsGraph0:=isgraph_type) loops_abses_inv loops_abses_inv
      (fmap loops (abses_pullback_pmap (A:=A) g)) (fun f => f $o g).
Proof.
  intro phi; unfold loops_abses_inv.
  refine (ap abses_endomorphism_trivial _
            (x:=equiv_path_abses^-1%equiv (fmap loops _ phi))
            @ _).
  { refine (ap _ (abses_loops_pullback_data _ _) @ _).
    refine (equiv_inverse_compose _ _ _ @ _).
    exact (ap _ (eissect _ _)). }
  by apply equiv_path_grouphomomorphism.
Defined.

Definition abses_loops_pullback `{Univalence} {B B' A : AbGroup} (g : B $-> B')
  : Square (IsGraph0:=isgraph_type) loops_abses loops_abses
      (fun f => f $o g) (fmap loops (abses_pullback_pmap (A:=A) g)).
Proof.
  intro phi.
  rapply moveR_equiv_M'.
  nrefine (_ @ (abses_loops_pullback_inv g (loops_abses phi))^).
  refine (ap (fun f => f $o g) (x:=phi) _^).
  unfold loops_abses_inv, loops_abses.
  refine (ap _ (eissect equiv_path_abses _) @ _).
  apply eisretr.
Defined.

back to top

Software Heritage — Copyright (C) 2015–2025, The Software Heritage developers. License: GNU AGPLv3+.
The source code of Software Heritage itself is available on our development forge.
The source code files archived by Software Heritage are available under their own copyright and licenses.
Terms of use: Archive access, API— Content policy— Contact— JavaScript license information— Web API