Skip to main content
  • Home
  • Development
  • Documentation
  • Donate
  • Operational login
  • Browse the archive

swh logo
SoftwareHeritage
Software
Heritage
Archive
Features
  • Search

  • Downloads

  • Save code now

  • Add forge now

  • Help

https://github.com/VincentYu68/SymmetryCurriculumLocomotion
19 June 2024, 13:49:32 UTC
  • Code
  • Branches (1)
  • Releases (0)
  • Visits
    • Branches
    • Releases
    • HEAD
    • refs/heads/master
    No releases to show
  • fa936fa
  • /
  • baselines
  • /
  • test_policy.py
Raw File Download
Take a new snapshot of a software origin

If the archived software origin currently browsed is not synchronized with its upstream version (for instance when new commits have been issued), you can explicitly request Software Heritage to take a new snapshot of it.

Use the form below to proceed. Once a request has been submitted and accepted, it will be processed as soon as possible. You can then check its processing state by visiting this dedicated page.
swh spinner

Processing "take a new snapshot" request ...

Permalinks

To reference or cite the objects present in the Software Heritage archive, permalinks based on SoftWare Hash IDentifiers (SWHIDs) must be used.
Select below a type of object currently browsed in order to display its associated SWHID and permalink.

  • content
  • directory
  • revision
  • snapshot
origin badgecontent badge Iframe embedding
swh:1:cnt:98c2c0f52e9350d798013be136d597cb93373500
origin badgedirectory badge Iframe embedding
swh:1:dir:807aa53e6b969289a57f1450acca35121f9a2220
origin badgerevision badge
swh:1:rev:b50478f8eca673730e3ce1a5441b1948b31a5187
origin badgesnapshot badge
swh:1:snp:5c020c91964c1d071f5051f08dcb7bf5f940ca20
Citations

This interface enables to generate software citations, provided that the root directory of browsed objects contains a citation.cff or codemeta.json file.
Select below a type of object currently browsed in order to generate citations for them.

  • content
  • directory
  • revision
  • snapshot
Generate software citation in BibTex format (requires biblatex-software package)
Generating citation ...
Generate software citation in BibTex format (requires biblatex-software package)
Generating citation ...
Generate software citation in BibTex format (requires biblatex-software package)
Generating citation ...
Generate software citation in BibTex format (requires biblatex-software package)
Generating citation ...
Tip revision: b50478f8eca673730e3ce1a5441b1948b31a5187 authored by Wenhao Yu on 31 January 2019, 22:41:28 UTC
update readme
Tip revision: b50478f
test_policy.py
__author__ = 'yuwenhao'

import gym
from baselines.common import set_global_seeds, tf_util as U
from baselines import bench
import os.path as osp
import sys, os, time, errno

import joblib
import numpy as np

import matplotlib
matplotlib.use('TkAgg')
import matplotlib.pyplot as plt
from gym import wrappers
import tensorflow as tf
from baselines.ppo1 import mlp_policy, pposgd_simple
import baselines.common.tf_util as U
import pydart2.utils.transformations as trans
import json

np.random.seed(1)

def policy_fn(name, ob_space, ac_space):
    return mlp_policy.MlpPolicy(name=name, ob_space=ob_space, ac_space=ac_space,
                                hid_size=64, num_hid_layers=3, gmm_comp=1)

def save_one_frame_shape(env, fpath, step):
    robo_skel = env.env.robot_skeleton
    data = []
    for b in robo_skel.bodynodes:
        if len(b.shapenodes) == 0:
            continue
        if 'cover' in b.name:
            continue
        shape_transform = b.T.dot(b.shapenodes[0].relative_transform()).tolist()
        #pos = trans.translation_from_matrix(shape_transform)
        #rot = trans.euler_from_matrix(shape_transform)
        shape_class = str(type(b.shapenodes[0].shape))
        if 'Mesh' in shape_class:
            stype = 'Mesh'
            path = b.shapenodes[0].shape.path()
            scale = b.shapenodes[0].shape.scale().tolist()
            sub_data = [path, scale]
        elif 'Box' in shape_class:
            stype = 'Box'
            sub_data = b.shapenodes[0].shape.size().tolist()
        elif 'Ellipsoid' in shape_class:
            stype = 'Ellipsoid'
            sub_data = b.shapenodes[0].shape.size().tolist()
        elif 'MultiSphere' in shape_class:
            stype = 'MultiSphere'
            sub_data = b.shapenodes[0].shape.spheres()
            for s in range(len(sub_data)):
                sub_data[s]['pos'] = sub_data[s]['pos'].tolist()

        data.append([stype, b.name, shape_transform, sub_data])
    file = fpath + '/frame_' + str(step)+'.txt'
    json.dump(data, open(file, 'w'))


if __name__ == '__main__':
    save_render_data = False
    interpolate = 0
    prev_state = None
    render_step = 0
    render_path = 'render_data/' + 'humanoid_walk'
    try:
        os.makedirs(render_path)
    except OSError as e:
        if e.errno != errno.EEXIST:
            raise

    if len(sys.argv) > 1:
        env = gym.make(sys.argv[1])
    else:
        env = gym.make('DartWalker3d-v1')

    if hasattr(env.env, 'disableViewer'):
        env.env.disableViewer = False

    # manually set the target velocities for different tasks
    if len(sys.argv) > 2:
        policy_directory = '/'.join(sys.argv[2].split('/')[0:-1])+'/' # put data back to the folder that stores the policies
        if sys.argv[2][0] == '/':
            policy_directory = '/' + policy_directory

        save_directory = policy_directory + '/stats'

        try:
            os.makedirs(save_directory)
        except OSError as e:
            if e.errno != errno.EEXIST:
                raise

        if sys.argv[1] == 'DartWalker3d-v1':
            env.env.assist_timeout = 0.0
            if 'walk' in sys.argv[2]:    # walk task
                env.env.final_tv = 1.0
                env.env.tv_endtime = 0.5
            if 'run' in sys.argv[2]:    # run task
                env.env.final_tv = 5.0
                env.env.tv_endtime = 2.0

        if sys.argv[1] == 'DartHumanWalker-v1':
            env.env.assist_timeout = 0
            if 'walk' in sys.argv[2]:    # walk task
                env.env.final_tv = 1.5
                env.env.tv_endtime = 0.5
            if 'walk_back' in sys.argv[2]:    # walk back task
                env.env.final_tv = -1.5
                env.env.tv_endtime = 0.5
            if 'run' in sys.argv[2]:    # run task
                env.env.final_tv = 5.0
                env.env.tv_endtime = 3.0

        if sys.argv[1] == 'DartDogRobot-v1':
            env.env.assist_timeout = 0.0
            if 'walk' in sys.argv[2]:    # walk task
                env.env.final_tv = 2.0
                env.env.tv_endtime = 1.0
            if 'run' in sys.argv[2]:    # run task
                env.env.final_tv = 7.0
                env.env.tv_endtime = 3.0

        if sys.argv[1] == 'DartHexapod-v1':
            env.env.assist_timeout = 0.0
            if 'walk' in sys.argv[2]:    # walk task
                env.env.final_tv = 2.0
                env.env.tv_endtime = 1.0
            if 'run' in sys.argv[2]:    # run task
                env.env.final_tv = 4.0
                env.env.tv_endtime = 2.0



    record = False
    if len(sys.argv) > 3:
        record = int(sys.argv[3]) == 1
    if record:
        env_wrapper = wrappers.Monitor(env, save_directory, force=True)
    else:
        env_wrapper = env

    if len(sys.argv) > 4:
        env.env.visualize = int(sys.argv[4]) == 1
    if hasattr(env.env, 'reset_range'):
        env.env.reset_range = 0.0

    sess = tf.InteractiveSession()

    policy = None
    if len(sys.argv) > 2:
        policy_params = joblib.load(sys.argv[2])
        ob_space = env.observation_space
        ac_space = env.action_space
        policy = policy_fn("pi", ob_space, ac_space)

        U.initialize()

        cur_scope = policy.get_variables()[0].name[0:policy.get_variables()[0].name.find('/')]
        orig_scope = list(policy_params.keys())[0][0:list(policy_params.keys())[0].find('/')]
        vars = policy.get_variables()

        for i in range(len(policy.get_variables())):
            assign_op = policy.get_variables()[i].assign(
                policy_params[policy.get_variables()[i].name.replace(cur_scope, orig_scope, 1)])
            sess.run(assign_op)

        if 'curriculum' in sys.argv[2] and 'policy_params.pkl' in sys.argv[2]:
            if os.path.isfile(sys.argv[2].replace('policy_params.pkl', 'init_poses.pkl')):
                init_qs, init_dqs = joblib.load(sys.argv[2].replace('policy_params.pkl', 'init_poses.pkl'))
                env.env.init_qs = init_qs
                env.env.init_dqs = init_dqs

        '''ref_policy_params = joblib.load('data/ppo_DartHumanWalker-v1210_energy015_vel65_6s_mirror_up01fwd01ltl15_spinepen1yaw001_thighyawpen005_initbentelbow_velrew3_avg_dcon1_asinput_damping2kneethigh_thigh150knee100_curriculum_1xjoint_shoulder90_dqpen00001/policy_params.pkl')
        ref_policy = policy_fn("ref_pi", ob_space, ac_space)

        cur_scope = ref_policy.get_variables()[0].name[0:ref_policy.get_variables()[0].name.find('/')]
        orig_scope = list(ref_policy_params.keys())[0][0:list(ref_policy_params.keys())[0].find('/')]
        vars = ref_policy.get_variables()

        for i in range(len(ref_policy.get_variables())):
            assign_op = ref_policy.get_variables()[i].assign(
                ref_policy_params[ref_policy.get_variables()[i].name.replace(cur_scope, orig_scope, 1)])
            sess.run(assign_op)

        env.env.ref_policy = ref_policy'''


        #init_q, init_dq = joblib.load('data/skel_data/init_states.pkl')
        #env.env.init_qs = init_q
        #env.env.init_dqs = init_dq

    print('===================')

    o = env_wrapper.reset()

    rew = 0

    actions = []

    traj = 1
    ct = 0
    vel_rew = []
    action_pen = []
    deviation_pen = []
    ref_rewards = []
    ref_feat_rew = []
    rew_seq = []
    com_z = []
    x_vel = []
    foot_contacts = []
    contact_force = []
    both_contact_forces = []
    avg_vels = []
    d=False
    step = 0
    total_steps = 0

    save_qs = []
    save_dqs = []
    save_init_state = False

    while ct < traj:
        if policy is not None:
            ac, vpred = policy.act(step<0, o)  # apply stochastic policy at the beginning
            act = ac
        else:
            act = env.action_space.sample()
        actions.append(act)

        '''if env_wrapper.env.env.t > 3.0 and env_wrapper.env.env.t < 6.0:
            env_wrapper.env.env.robot_skeleton.bodynode('head').add_ext_force(np.array([-200, 0, 0]))'''
        o, r, d, env_info = env_wrapper.step(act)

        if 'action_pen' in env_info:
            action_pen.append(env_info['action_pen'])
        if 'vel_rew' in env_info:
            vel_rew.append(env_info['vel_rew'])
        rew_seq.append(r)
        if 'deviation_pen' in env_info:
            deviation_pen.append(env_info['deviation_pen'])
        if 'contact_force' in env_info:
            contact_force.append(env_info['contact_force'])
        if 'contact_forces' in env_info:
            both_contact_forces.append(env_info['contact_forces'])
        if 'ref_reward' in env_info:
            ref_rewards.append(env_info['ref_reward'])
        if 'ref_feat_rew' in env_info:
            ref_feat_rew.append(env_info['ref_feat_rew'])
        if 'avg_vel' in env_info:
            avg_vels.append(env_info['avg_vel'])

        com_z.append(o[1])
        foot_contacts.append(o[-2:])

        rew += r

        if len(sys.argv) > 4:
            if  env.env.visualize:
                env_wrapper.render()
        else:
            env_wrapper.render()
        step += 1
        total_steps += 1

        #time.sleep(0.1)
        if len(o) > 25:
            x_vel.append(env.env.robot_skeleton.dq[0])


        #if np.abs(env.env.t - env.env.tv_endtime) < 0.01:
        #    save_qs.append(env.env.robot_skeleton.q)
            save_dqs.append(env.env.robot_skeleton.dq)

        if save_render_data:
            cur_state = env.env.state_vector()
            if prev_state is not None and interpolate > 0:
                for it in range(interpolate):
                    int_state = (it+1)*1.0/(interpolate+1) * prev_state + (1-(it+1)*1.0/(interpolate+1)) * cur_state
                    env.env.set_state_vector(int_state)
                    save_one_frame_shape(env, render_path, render_step)
                    render_step += 1
            env.env.set_state_vector(cur_state)
            save_one_frame_shape(env, render_path, render_step)
            render_step += 1
            prev_state = env.env.state_vector()

        if d:
            step = 0
            if 'contact_locations' in env_info:
                c_loc = env_info['contact_locations']
                for j in range(len(c_loc[0]) - 1):
                    c_loc[0][j] = c_loc[0][j+1] - c_loc[0][j]
                for j in range(len(c_loc[1]) - 1):
                    c_loc[1][j] = c_loc[1][j + 1] - c_loc[1][j]
                print(np.mean(c_loc[0][0:-1], axis=0))
                print(np.mean(c_loc[1][0:-1], axis=0))
            ct += 1
            print('reward: ', rew)
            o=env_wrapper.reset()
            #break
    print('avg rew ', rew / traj)
    print('avg energy penalty: ', np.sum(action_pen)/total_steps)
    print('total vel rew: ', np.sum(vel_rew)/traj)

    if len(sys.argv) > 2:
        np.savetxt(save_directory+'/average_action_magnitude.txt', [np.sum(action_pen)/total_steps])

        if 'Walker' in sys.argv[1]: # measure SI for biped
            l_contact_total = 0
            r_contact_total = 0
            for i in range(len(actions)):
                l_contact_total += np.linalg.norm(actions[i][[0,1,2,3,4,5]])
                r_contact_total += np.linalg.norm(actions[i][[6,7,8,9,10,11]])
            print('total forces: ', l_contact_total, r_contact_total)
            print('SI: ', 2*np.abs(l_contact_total-r_contact_total)/(l_contact_total+r_contact_total))

            np.savetxt(save_directory + '/symmetry_index.txt', [2*np.abs(l_contact_total-r_contact_total)/(l_contact_total+r_contact_total)])








Software Heritage — Copyright (C) 2015–2025, The Software Heritage developers. License: GNU AGPLv3+.
The source code of Software Heritage itself is available on our development forge.
The source code files archived by Software Heritage are available under their own copyright and licenses.
Terms of use: Archive access, API— Contact— JavaScript license information— Web API

back to top