
Demonstration : the origin of 
the power law 

This notebook contains an illustration in the context of the following article, to appear in eLife in 2021:

Identical sequences found in distant genomes reveal frequent horizontal transfer across the bacterial domain

Michael Sheinman, Ksenia Arkhipova, Peter F. Arndt, Bas E. Dutilh, Rutger Hermsen, and Florian Massip.

Our goal here is to demonstrate the origin of the power-law tail of the match-length distributions (MLDs) discussed in the above 

article, as illustrated in Box 1 of the main text.

◼ A single, long transfer between a pair of genomes a and b 

Imagine that, due to an event of Horizontal Gene Transfer (HGT) a time t ago, a pair of genomes a and b obtain an exact match of 

length K.  Due to mutations in either instance of the sequence, occurring at a rate  2 μ per basepair, this long match is subse-

quently “broken” into an increasing number of smaller pieces (see Box 1).  This type of process is sometimes referred to as a stick-

breaking process.  Then after some time the contribution of this sequence to the absolute frequency distribution of exact matches 

between genomes a and b is well approximated by the following exponential distribution:

In[13]:= mldExp[r_, t_] := K (2 μ t)^2 E^(-2 μ r t)

Let us check this equation is normalized properly, by integrating over r; that should result in the total number of matches (pieces 

of the broken “stick”):

In[14]:= numberOfSticks = Assuming[{t > 0, μ > 0}, Integrate[mldExp[r, t], {r, 0, Infinity}]]

Out[14]= 2 K t μ

The total number of matches increases linearly in time with rate 2 μ K, as it should.

In addition, we can find the cumulative length of the pieces:

In[15]:= totalLength = Assuming[{t > 0, μ > 0}, Integrate[ r mldExp[r, t], {r, 0, Infinity}]]

Out[15]= K

That is the total length of the matches stays constant at K, unchanged by the “breaking” of the stick.

◼ A single transfer between genus 1 and genus 2

Now assume that, a time t ago, a long sequence of length K is introduced in two genera 1 and 2, generating a long exact match 

between some genomes belonging to genus 1 and 2.  We assume that, possibly due to a selective sweep, this sequence is later 

found in a fraction f1 of genomes from genus 1 and in a fraction f2 of genomes of genus 2. Now we sample n1 genomes of genus 1 

and n2 of genus 2, and find all matches between all genome pairs (a, b) where a is in genus 1 and b is in genus 2.  Then the 

expected contribution of this sequence to the absolute frequency distribution of all exact matches in the sample is:

In[16]:= mldExp2[r_, t_] := f1 f2 n1 n2 mldExp[r, t]

◼ Many transfers between genus 1 and 2

Next we consider that such transfers have taken place many times in the past, at a constant rate ρ. Then the expected absolute 

frequency distribution becomes a mix of contributions from many events that occurred in the past. This mix is obtained by 

integrating over time:



In[17]:= mldCombined[r_] = Assuming[{μ > 0, ρ > 0, r > 0}, Integrate[ρ mldExp2[r, t], {t, 0, Infinity}]]

Out[17]=
f1 f2 K n1 n2 ρ

r3 μ

The result is a power law with exponent -3.  This shows that the power law is expected when exponential MLDs are mixed and the 

divergence times of those MLDs is not strongly biased towards a particular value. 

◼ Normalization of the MLD

In the main text, we present empirical MLDs that have been normalized by dividing the absolute frequencies by the total length of 

the genomes sampled from both genus 1 and genus 2, denoted l1 and l2.  This way, if we double the number of sequences 

sampled from one genus the expected MLD stays the same, because both the expected absolute number of matches and the norm 

double.

Defining L1 = l1 /n1 and L2 = l2 /n2 as the mean length of the genomes in these genera, the definition of the normalized MLD 

becomes:

In[18]:= nldCombinedNormalized[r_] = Simplify[mldCombined[r]/(L1 L2 n1 n2)]

Out[18]=
f1 f2 K ρ

L1 L2 r3 μ

That is the equation shown in the main text.

◼ Demonstration of the emergence of the power law

The emergence of the power law can be demonstrated by randomly sampling 50 exponential MLDs and adding them up. The result 

should approximate a power law with exponent of -3. 
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In[19]:= SeedRandom[12]; (* fix random sead for reproducibility *)

number = 50; (* number of exponential MLDs sampled *)

myK = 50 000; (* length of the sequences transferred, K *)

(* pick random divergences 2 μ t between 0 and 10^-2 by sampling times between 0 and 5*10^-3/μ *)

times = Sort[Table[RandomReal[{0, 5×10^-3}], {i, 1, number}]]/μ;

(* generate the MLDs corresponding to this divergence *)

mldSample = Assuming[

μ > 0,

Simplify[

Table[

mldExp[r, times[[i]]] /. {K → myK},

{i, 1, number, 1}

]

]

];

(* sum them up *)

mldSum = Sum[mldSample[[i]], {i, 1, number}];

(* plot all MLDs, their sum, and a power law *)

LogLogPlot

{mldSample, mldSum, 10^10/r^3}, {r, 300, 10^5},

PlotRange → {{3*10^2, 10^5}, {10^-6, All}},

AspectRatio → 1, AxesStyle → Black, AxesLabel → "match length r", "frequency",

PlotStyle → Flatten[{Table[Gray, {i, 1, number}], Red, Blue}]


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Here, the gray lines are the individual exponential MLDs (in log-scale), the red line is their sum, and the blue line is a power law 

with exponent -3 (for comparison). This figure is the basis for the figure in Box 1.
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