#include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "mvt.hpp" #include "mbtiles.hpp" #include "rawtiles.hpp" #include "geometry.hpp" #include "tile.hpp" #include "pool.hpp" #include "projection.hpp" #include "serial.hpp" #include "options.hpp" #include "main.hpp" #define CMD_BITS 3 #define XSTRINGIFY(s) STRINGIFY(s) #define STRINGIFY(s) #s pthread_mutex_t db_lock = PTHREAD_MUTEX_INITIALIZER; pthread_mutex_t var_lock = PTHREAD_MUTEX_INITIALIZER; std::vector to_feature(drawvec &geom) { std::vector out; for (size_t i = 0; i < geom.size(); i++) { out.push_back(mvt_geometry(geom[i].op, geom[i].x, geom[i].y)); } return out; } bool draws_something(drawvec &geom) { for (size_t i = 1; i < geom.size(); i++) { if (geom[i].op == VT_LINETO && (geom[i].x != geom[i - 1].x || geom[i].y != geom[i - 1].y)) { return true; } } return false; } int metacmp(int m1, const std::vector &keys1, const std::vector &values1, char *stringpool1, int m2, const std::vector &keys2, const std::vector &values2, char *stringpool2); int coalindexcmp(const struct coalesce *c1, const struct coalesce *c2); static int is_integer(const char *s, long long *v); struct coalesce { char *meta; char *stringpool; std::vector keys; std::vector values; drawvec geom; unsigned long long index; unsigned long long index2; long long original_seq; int type; int m; bool coalesced; double spacing; bool has_id; unsigned long long id; bool operator<(const coalesce &o) const { int cmp = coalindexcmp(this, &o); if (cmp < 0) { return true; } else { return false; } } }; struct preservecmp { bool operator()(const struct coalesce &a, const struct coalesce &b) { return a.original_seq < b.original_seq; } } preservecmp; int coalcmp(const void *v1, const void *v2) { const struct coalesce *c1 = (const struct coalesce *) v1; const struct coalesce *c2 = (const struct coalesce *) v2; int cmp = c1->type - c2->type; if (cmp != 0) { return cmp; } return metacmp(c1->m, c1->keys, c1->values, c1->stringpool, c2->m, c2->keys, c2->values, c2->stringpool); } int coalindexcmp(const struct coalesce *c1, const struct coalesce *c2) { int cmp = coalcmp((const void *) c1, (const void *) c2); if (cmp == 0) { if (c1->index < c2->index) { return -1; } else if (c1->index > c2->index) { return 1; } if (c1->index2 > c2->index2) { return -1; } else if (c1->index2 < c2->index2) { return 1; } } return cmp; } mvt_value retrieve_string(long long off, char *stringpool, int *otype) { int type = stringpool[off]; char *s = stringpool + off + 1; if (otype != NULL) { *otype = type; } mvt_value tv; if (type == mvt_double) { long long v; if (is_integer(s, &v)) { if (v >= 0) { tv.type = mvt_int; tv.numeric_value.int_value = v; } else { tv.type = mvt_sint; tv.numeric_value.sint_value = v; } } else { double d = atof(s); if (d == (float) d) { tv.type = mvt_float; tv.numeric_value.float_value = d; } else { tv.type = mvt_double; tv.numeric_value.double_value = d; } } } else if (type == mvt_bool) { tv.type = mvt_bool; tv.numeric_value.bool_value = (s[0] == 't'); } else { tv.type = mvt_string; tv.string_value = s; } return tv; } void decode_meta(int m, std::vector &metakeys, std::vector &metavals, char *stringpool, mvt_layer &layer, mvt_feature &feature) { int i; for (i = 0; i < m; i++) { int otype; mvt_value key = retrieve_string(metakeys[i], stringpool, NULL); mvt_value value = retrieve_string(metavals[i], stringpool, &otype); layer.tag(feature, key.string_value, value); } } int metacmp(int m1, const std::vector &keys1, const std::vector &values1, char *stringpool1, int m2, const std::vector &keys2, const std::vector &values2, char *stringpool2) { // XXX // Ideally this would make identical features compare the same lexically // even if their attributes were declared in different orders in different instances. // In practice, this is probably good enough to put "identical" features together. int i; for (i = 0; i < m1 && i < m2; i++) { mvt_value key1 = retrieve_string(keys1[i], stringpool1, NULL); mvt_value key2 = retrieve_string(keys2[i], stringpool2, NULL); if (key1.string_value < key2.string_value) { return -1; } else if (key1.string_value > key2.string_value) { return 1; } long long off1 = values1[i]; int type1 = stringpool1[off1]; char *s1 = stringpool1 + off1 + 1; long long off2 = values2[i]; int type2 = stringpool2[off2]; char *s2 = stringpool2 + off2 + 1; if (type1 != type2) { return type1 - type2; } int cmp = strcmp(s1, s2); if (s1 != s2) { return cmp; } } if (m1 < m2) { return -1; } else if (m1 > m2) { return 1; } else { return 0; } } static int is_integer(const char *s, long long *v) { errno = 0; char *endptr; *v = strtoll(s, &endptr, 0); if (*v == 0 && errno != 0) { return 0; } if ((*v == LLONG_MIN || *v == LLONG_MAX) && (errno == ERANGE)) { return 0; } if (*endptr != '\0') { // Special case: If it is an integer followed by .0000 or similar, // it is still an integer if (*endptr != '.') { return 0; } endptr++; for (; *endptr != '\0'; endptr++) { if (*endptr != '0') { return 0; } } return 1; } return 1; } void rewrite(drawvec &geom, int z, int nextzoom, int maxzoom, long long *bbox, unsigned tx, unsigned ty, int buffer, int line_detail, int *within, long long *geompos, FILE **geomfile, const char *fname, signed char t, int layer, long long metastart, signed char feature_minzoom, int child_shards, int max_zoom_increment, long long seq, int tippecanoe_minzoom, int tippecanoe_maxzoom, int segment, unsigned *initial_x, unsigned *initial_y, int m, std::vector &metakeys, std::vector &metavals, bool has_id, unsigned long long id, unsigned long long index, long long extent) { if (geom.size() > 0 && nextzoom <= maxzoom) { int xo, yo; int span = 1 << (nextzoom - z); // Get the feature bounding box in pixel (256) coordinates at the child zoom // in order to calculate which sub-tiles it can touch including the buffer. long long bbox2[4]; int k; for (k = 0; k < 4; k++) { // Division instead of right-shift because coordinates can be negative bbox2[k] = bbox[k] / (1 << (32 - nextzoom - 8)); } // Decrement the top and left edges so that any features that are // touching the edge can potentially be included in the adjacent tiles too. bbox2[0] -= buffer + 1; bbox2[1] -= buffer + 1; bbox2[2] += buffer; bbox2[3] += buffer; for (k = 0; k < 4; k++) { if (bbox2[k] < 0) { bbox2[k] = 0; } if (bbox2[k] >= 256 * span) { bbox2[k] = 256 * (span - 1); } bbox2[k] /= 256; } // Offset from tile coordinates back to world coordinates unsigned sx = 0, sy = 0; if (z != 0) { sx = tx << (32 - z); sy = ty << (32 - z); } drawvec geom2; for (size_t i = 0; i < geom.size(); i++) { geom2.push_back(draw(geom[i].op, (geom[i].x + sx) >> geometry_scale, (geom[i].y + sy) >> geometry_scale)); } for (xo = bbox2[0]; xo <= bbox2[2]; xo++) { for (yo = bbox2[1]; yo <= bbox2[3]; yo++) { unsigned jx = tx * span + xo; unsigned jy = ty * span + yo; // j is the shard that the child tile's data is being written to. // // Be careful: We can't jump more zoom levels than max_zoom_increment // because that could break the constraint that each of the children // of the current tile must have its own shard, because the data for // the child tile must be contiguous within the shard. // // But it's OK to spread children across all the shards, not just // the four that would normally result from splitting one tile, // because it will go through all the shards when it does the // next zoom. // // If child_shards is a power of 2 but not a power of 4, this will // shard X more widely than Y. XXX Is there a better way to do this // without causing collisions? int j = ((jx << max_zoom_increment) | ((jy & ((1 << max_zoom_increment) - 1)))) & (child_shards - 1); { if (!within[j]) { serialize_int(geomfile[j], nextzoom, &geompos[j], fname); serialize_uint(geomfile[j], tx * span + xo, &geompos[j], fname); serialize_uint(geomfile[j], ty * span + yo, &geompos[j], fname); within[j] = 1; } serial_feature sf; sf.layer = layer; sf.segment = segment; sf.seq = seq; sf.t = t; sf.has_id = has_id; sf.id = id; sf.has_tippecanoe_minzoom = tippecanoe_minzoom != -1; sf.tippecanoe_minzoom = tippecanoe_minzoom; sf.has_tippecanoe_maxzoom = tippecanoe_maxzoom != -1; sf.tippecanoe_maxzoom = tippecanoe_maxzoom; sf.metapos = metastart; sf.geometry = geom2; sf.index = index; sf.extent = extent; sf.m = m; sf.feature_minzoom = feature_minzoom; if (metastart < 0) { for (int i = 0; i < m; i++) { sf.keys.push_back(metakeys[i]); sf.values.push_back(metavals[i]); } } serialize_feature(geomfile[j], &sf, &geompos[j], fname, initial_x[segment] >> geometry_scale, initial_y[segment] >> geometry_scale, true); } } } } } struct partial { std::vector geoms; std::vector keys; std::vector values; std::vector arc_polygon; char *meta; long long layer; long long original_seq; unsigned long long index; unsigned long long index2; int m; int segment; bool reduced; int z; int line_detail; int maxzoom; double spacing; double simplification; signed char t; unsigned long long id; bool has_id; ssize_t renamed; }; struct partial_arg { std::vector *partials; int task; int tasks; }; drawvec revive_polygon(drawvec &geom, double area, int z, int detail) { // From area in world coordinates to area in tile coordinates long long divisor = 1LL << (32 - detail - z); area /= divisor * divisor; if (area == 0) { return drawvec(); } int height = ceil(sqrt(area)); int width = round(area / height); if (width == 0) { width = 1; } long long sx = 0, sy = 0, n = 0; for (size_t i = 0; i < geom.size(); i++) { if (geom[i].op == VT_MOVETO || geom[i].op == VT_LINETO) { sx += geom[i].x; sy += geom[i].y; n++; } } if (n > 0) { sx /= n; sy /= n; drawvec out; out.push_back(draw(VT_MOVETO, sx - (width / 2), sy - (height / 2))); out.push_back(draw(VT_LINETO, sx - (width / 2) + width, sy - (height / 2))); out.push_back(draw(VT_LINETO, sx - (width / 2) + width, sy - (height / 2) + height)); out.push_back(draw(VT_LINETO, sx - (width / 2), sy - (height / 2) + height)); out.push_back(draw(VT_LINETO, sx - (width / 2), sy - (height / 2))); return out; } else { return drawvec(); } } void *partial_feature_worker(void *v) { struct partial_arg *a = (struct partial_arg *) v; std::vector *partials = a->partials; for (size_t i = a->task; i < (*partials).size(); i += a->tasks) { drawvec geom = (*partials)[i].geoms[0]; // XXX assumption of a single geometry at the beginning (*partials)[i].geoms.clear(); // avoid keeping two copies in memory signed char t = (*partials)[i].t; int z = (*partials)[i].z; int line_detail = (*partials)[i].line_detail; int maxzoom = (*partials)[i].maxzoom; if (additional[A_GRID_LOW_ZOOMS] && z < maxzoom) { geom = stairstep(geom, z, line_detail); } double area = 0; if (t == VT_POLYGON) { area = get_mp_area(geom); } if ((t == VT_LINE || t == VT_POLYGON) && !(prevent[P_SIMPLIFY] || (z == maxzoom && prevent[P_SIMPLIFY_LOW]) || (z < maxzoom && additional[A_GRID_LOW_ZOOMS]))) { if (1 /* !reduced */) { // XXX why did this not simplify if reduced? if (t == VT_LINE) { geom = remove_noop(geom, t, 32 - z - line_detail); } bool already_marked = false; if (additional[A_DETECT_SHARED_BORDERS] && t == VT_POLYGON) { already_marked = true; } if (!already_marked) { drawvec ngeom = simplify_lines(geom, z, line_detail, !(prevent[P_CLIPPING] || prevent[P_DUPLICATION]), (*partials)[i].simplification, t == VT_POLYGON ? 4 : 0); if (t != VT_POLYGON || ngeom.size() >= 3) { geom = ngeom; } } } } #if 0 if (t == VT_LINE && z != basezoom) { geom = shrink_lines(geom, z, line_detail, basezoom, &along); } #endif if (t == VT_LINE && additional[A_REVERSE]) { geom = reorder_lines(geom); } to_tile_scale(geom, z, line_detail); std::vector geoms; geoms.push_back(geom); if (t == VT_POLYGON) { // Scaling may have made the polygon degenerate. // Give Clipper a chance to try to fix it. for (size_t g = 0; g < geoms.size(); g++) { drawvec before = geoms[g]; geoms[g] = clean_or_clip_poly(geoms[g], 0, 0, 0, false); if (additional[A_DEBUG_POLYGON]) { check_polygon(geoms[g], before); } if (geoms[g].size() < 3) { if (area > 0) { geoms[g] = revive_polygon(before, area / geoms.size(), z, line_detail); } else { geoms[g].clear(); } } } } // Worth skipping this if not coalescing anyway? if (geoms.size() > 0 && geoms[0].size() > 0) { (*partials)[i].index = encode(geoms[0][0].x, geoms[0][0].y); (*partials)[i].index2 = encode(geoms[0][geoms[0].size() - 1].x, geoms[0][geoms[0].size() - 1].y); // Anything numbered below the start of the line // can't possibly be the next feature. // We want lowest-but-not-under. if ((*partials)[i].index2 < (*partials)[i].index) { (*partials)[i].index2 = ~0LL; } } else { (*partials)[i].index = 0; (*partials)[i].index2 = 0; } (*partials)[i].geoms = geoms; } return NULL; } int manage_gap(unsigned long long index, unsigned long long *previndex, double scale, double gamma, double *gap) { if (gamma > 0) { if (*gap > 0) { if (index == *previndex) { return 1; // Exact duplicate: can't fulfil the gap requirement } if (index < *previndex || std::exp(std::log((index - *previndex) / scale) * gamma) >= *gap) { // Dot is further from the previous than the nth root of the gap, // so produce it, and choose a new gap at the next point. *gap = 0; } else { return 1; } } else if (index >= *previndex) { *gap = (index - *previndex) / scale; if (*gap == 0) { return 1; // Exact duplicate: skip } else if (*gap < 1) { return 1; // Narrow dot spacing: need to stretch out } else { *gap = 0; // Wider spacing than minimum: so pass through unchanged } } *previndex = index; } return 0; } // Does not fix up moveto/lineto static drawvec reverse_subring(drawvec const &dv) { drawvec out; for (size_t i = dv.size(); i > 0; i--) { out.push_back(dv[i - 1]); } return out; } struct edge { unsigned x1; unsigned y1; unsigned x2; unsigned y2; unsigned ring; edge(unsigned _x1, unsigned _y1, unsigned _x2, unsigned _y2, unsigned _ring) { x1 = _x1; y1 = _y1; x2 = _x2; y2 = _y2; ring = _ring; } bool operator<(const edge &s) const { long long cmp = (long long) y1 - s.y1; if (cmp == 0) { cmp = (long long) x1 - s.x1; } if (cmp == 0) { cmp = (long long) y2 - s.y2; } if (cmp == 0) { cmp = (long long) x2 - s.x2; } return cmp < 0; } }; struct edgecmp_ring { bool operator()(const edge &a, const edge &b) { long long cmp = (long long) a.y1 - b.y1; if (cmp == 0) { cmp = (long long) a.x1 - b.x1; } if (cmp == 0) { cmp = (long long) a.y2 - b.y2; } if (cmp == 0) { cmp = (long long) a.x2 - b.x2; } if (cmp == 0) { cmp = (long long) a.ring - b.ring; } return cmp < 0; } } edgecmp_ring; bool edges_same(std::pair::iterator, std::vector::iterator> e1, std::pair::iterator, std::vector::iterator> e2) { if ((e2.second - e2.first) != (e1.second - e1.first)) { return false; } while (e1.first != e1.second) { if (e1.first->ring != e2.first->ring) { return false; } ++e1.first; ++e2.first; } return true; } bool find_common_edges(std::vector &partials, int z, int line_detail, double simplification, int maxzoom, double merge_fraction) { size_t merge_count = ceil((1 - merge_fraction) * partials.size()); for (size_t i = 0; i < partials.size(); i++) { if (partials[i].t == VT_POLYGON) { for (size_t j = 0; j < partials[i].geoms.size(); j++) { drawvec &g = partials[i].geoms[j]; drawvec out; for (size_t k = 0; k < g.size(); k++) { if (g[k].op == VT_LINETO && k > 0 && g[k - 1] == g[k]) { ; } else { out.push_back(g[k]); } } partials[i].geoms[j] = out; } } } // Construct a mapping from all polygon edges to the set of rings // that each edge appears in. (The ring number is across all polygons; // we don't need to look it back up, just to tell where it changes.) std::vector edges; size_t ring = 0; for (size_t i = 0; i < partials.size(); i++) { if (partials[i].t == VT_POLYGON) { for (size_t j = 0; j < partials[i].geoms.size(); j++) { for (size_t k = 0; k + 1 < partials[i].geoms[j].size(); k++) { if (partials[i].geoms[j][k].op == VT_MOVETO) { ring++; } if (partials[i].geoms[j][k + 1].op == VT_LINETO) { drawvec dv; if (partials[i].geoms[j][k] < partials[i].geoms[j][k + 1]) { dv.push_back(partials[i].geoms[j][k]); dv.push_back(partials[i].geoms[j][k + 1]); } else { dv.push_back(partials[i].geoms[j][k + 1]); dv.push_back(partials[i].geoms[j][k]); } edges.push_back(edge(dv[0].x, dv[0].y, dv[1].x, dv[1].y, ring)); } } } } } std::sort(edges.begin(), edges.end(), edgecmp_ring); std::set necessaries; // Now mark all the points where the set of rings using the edge on one side // is not the same as the set of rings using the edge on the other side. for (size_t i = 0; i < partials.size(); i++) { if (partials[i].t == VT_POLYGON) { for (size_t j = 0; j < partials[i].geoms.size(); j++) { drawvec &g = partials[i].geoms[j]; for (size_t k = 0; k < g.size(); k++) { g[k].necessary = 0; } for (size_t a = 0; a < g.size(); a++) { if (g[a].op == VT_MOVETO) { size_t b; for (b = a + 1; b < g.size(); b++) { if (g[b].op != VT_LINETO) { break; } } // -1 because of duplication at the end size_t s = b - a - 1; if (s > 0) { drawvec left; if (g[a + (s - 1) % s] < g[a]) { left.push_back(g[a + (s - 1) % s]); left.push_back(g[a]); } else { left.push_back(g[a]); left.push_back(g[a + (s - 1) % s]); } if (left[1] < left[0]) { fprintf(stderr, "left misordered\n"); } std::pair::iterator, std::vector::iterator> e1 = std::equal_range(edges.begin(), edges.end(), edge(left[0].x, left[0].y, left[1].x, left[1].y, 0)); for (size_t k = 0; k < s; k++) { drawvec right; if (g[a + k] < g[a + k + 1]) { right.push_back(g[a + k]); right.push_back(g[a + k + 1]); } else { right.push_back(g[a + k + 1]); right.push_back(g[a + k]); } std::pair::iterator, std::vector::iterator> e2 = std::equal_range(edges.begin(), edges.end(), edge(right[0].x, right[0].y, right[1].x, right[1].y, 0)); if (right[1] < right[0]) { fprintf(stderr, "left misordered\n"); } if (e1.first == e1.second || e2.first == e2.second) { fprintf(stderr, "Internal error: polygon edge lookup failed for %lld,%lld to %lld,%lld or %lld,%lld to %lld,%lld\n", left[0].x, left[0].y, left[1].x, left[1].y, right[0].x, right[0].y, right[1].x, right[1].y); exit(EXIT_FAILURE); } if (!edges_same(e1, e2)) { g[a + k].necessary = 1; necessaries.insert(g[a + k]); } e1 = e2; } } a = b - 1; } } } } } edges.clear(); std::map arcs; std::multimap merge_candidates; // from arc to partial // Roll rings that include a necessary point around so they start at one for (size_t i = 0; i < partials.size(); i++) { if (partials[i].t == VT_POLYGON) { for (size_t j = 0; j < partials[i].geoms.size(); j++) { drawvec &g = partials[i].geoms[j]; for (size_t k = 0; k < g.size(); k++) { if (necessaries.count(g[k]) != 0) { g[k].necessary = 1; } } for (size_t k = 0; k < g.size(); k++) { if (g[k].op == VT_MOVETO) { ssize_t necessary = -1; ssize_t lowest = k; size_t l; for (l = k + 1; l < g.size(); l++) { if (g[l].op != VT_LINETO) { break; } if (g[l].necessary) { necessary = l; } if (g[l] < g[lowest]) { lowest = l; } } if (necessary < 0) { necessary = lowest; // Add a necessary marker if there was none in the ring, // so the arc code below can find it. g[lowest].necessary = 1; } { drawvec tmp; // l - 1 because the endpoint is duplicated for (size_t m = necessary; m < l - 1; m++) { tmp.push_back(g[m]); } for (ssize_t m = k; m < necessary; m++) { tmp.push_back(g[m]); } // replace the endpoint tmp.push_back(g[necessary]); if (tmp.size() != l - k) { fprintf(stderr, "internal error shifting ring\n"); exit(EXIT_FAILURE); } for (size_t m = 0; m < tmp.size(); m++) { if (m == 0) { tmp[m].op = VT_MOVETO; } else { tmp[m].op = VT_LINETO; } g[k + m] = tmp[m]; } } // Now peel off each set of segments from one necessary point to the next // into an "arc" as in TopoJSON for (size_t m = k; m < l; m++) { if (!g[m].necessary) { fprintf(stderr, "internal error in arc building\n"); exit(EXIT_FAILURE); } drawvec arc; size_t n; for (n = m; n < l; n++) { arc.push_back(g[n]); if (n > m && g[n].necessary) { break; } } auto f = arcs.find(arc); if (f == arcs.end()) { drawvec arc2 = reverse_subring(arc); auto f2 = arcs.find(arc2); if (f2 == arcs.end()) { // Add new arc size_t added = arcs.size() + 1; arcs.insert(std::pair(arc, added)); partials[i].arc_polygon.push_back(added); merge_candidates.insert(std::pair(added, i)); } else { partials[i].arc_polygon.push_back(-(ssize_t) f2->second); merge_candidates.insert(std::pair(-(ssize_t) f2->second, i)); } } else { partials[i].arc_polygon.push_back(f->second); merge_candidates.insert(std::pair(f->second, i)); } m = n - 1; } partials[i].arc_polygon.push_back(0); k = l - 1; } } } } } // Simplify each arc std::vector simplified_arcs; size_t count = 0; for (auto ai = arcs.begin(); ai != arcs.end(); ++ai) { if (simplified_arcs.size() < ai->second + 1) { simplified_arcs.resize(ai->second + 1); } drawvec dv = ai->first; for (size_t i = 0; i < dv.size(); i++) { if (i == 0) { dv[i].op = VT_MOVETO; } else { dv[i].op = VT_LINETO; } } if (!(prevent[P_SIMPLIFY] || (z == maxzoom && prevent[P_SIMPLIFY_LOW]) || (z < maxzoom && additional[A_GRID_LOW_ZOOMS]))) { simplified_arcs[ai->second] = simplify_lines(dv, z, line_detail, !(prevent[P_CLIPPING] || prevent[P_DUPLICATION]), simplification, 3); } else { simplified_arcs[ai->second] = dv; } count++; } // If necessary, merge some adjacent polygons into some other polygons struct merge_order { ssize_t edge; unsigned long long gap; size_t p1; size_t p2; bool operator<(const merge_order &m) const { return gap < m.gap; } }; std::vector order; for (ssize_t i = 0; i < (ssize_t) simplified_arcs.size(); i++) { auto r1 = merge_candidates.equal_range(i); for (auto r1i = r1.first; r1i != r1.second; ++r1i) { auto r2 = merge_candidates.equal_range(-i); for (auto r2i = r2.first; r2i != r2.second; ++r2i) { if (r1i->second != r2i->second) { merge_order mo; mo.edge = i; if (partials[r1i->second].index > partials[r2i->second].index) { mo.gap = partials[r1i->second].index - partials[r2i->second].index; } else { mo.gap = partials[r2i->second].index - partials[r1i->second].index; } mo.p1 = r1i->second; mo.p2 = r2i->second; order.push_back(mo); } } } } std::sort(order.begin(), order.end()); size_t merged = 0; for (size_t o = 0; o < order.size(); o++) { if (merged >= merge_count) { break; } size_t i = order[o].p1; while (partials[i].renamed >= 0) { i = partials[i].renamed; } size_t i2 = order[o].p2; while (partials[i2].renamed >= 0) { i2 = partials[i2].renamed; } for (size_t j = 0; j < partials[i].arc_polygon.size() && merged < merge_count; j++) { if (partials[i].arc_polygon[j] == order[o].edge) { { // XXX snap links if (partials[order[o].p2].arc_polygon.size() > 0) { // This has to merge the ring that contains the anti-arc to this arc // into the current ring, and then add whatever other rings were in // that feature on to the end. // // This can't be good for keeping parent-child relationships among // the rings in order, but Wagyu should sort that out later std::vector additions; std::vector &here = partials[i].arc_polygon; std::vector &other = partials[i2].arc_polygon; #if 0 printf("seeking %zd\n", partials[i].arc_polygon[j]); printf("before: "); for (size_t k = 0; k < here.size(); k++) { printf("%zd ", here[k]); } printf("\n"); printf("other: "); for (size_t k = 0; k < other.size(); k++) { printf("%zd ", other[k]); } printf("\n"); #endif for (size_t k = 0; k < other.size(); k++) { size_t l; for (l = k; l < other.size(); l++) { if (other[l] == 0) { break; } } if (l >= other.size()) { l--; } #if 0 for (size_t m = k; m <= l; m++) { printf("%zd ", other[m]); } printf("\n"); #endif size_t m; for (m = k; m <= l; m++) { if (other[m] == -partials[i].arc_polygon[j]) { break; } } if (m <= l) { // Found the shared arc here.erase(here.begin() + j); size_t off = 0; for (size_t n = m + 1; n < l; n++) { here.insert(here.begin() + j + off, other[n]); off++; } for (size_t n = k; n < m; n++) { here.insert(here.begin() + j + off, other[n]); off++; } } else { // Looking at some other ring for (size_t n = k; n <= l; n++) { additions.push_back(other[n]); } } k = l; } partials[i2].arc_polygon.clear(); partials[i2].renamed = i; merged++; for (size_t k = 0; k < additions.size(); k++) { partials[i].arc_polygon.push_back(additions[k]); } #if 0 printf("after: "); for (size_t k = 0; k < here.size(); k++) { printf("%zd ", here[k]); } printf("\n"); #endif #if 0 for (size_t k = 0; k + 1 < here.size(); k++) { if (here[k] != 0 && here[k + 1] != 0) { if (simplified_arcs[here[k + 1]][0] != simplified_arcs[here[k]][simplified_arcs[here[k]].size() - 1]) { printf("error from %zd to %zd\n", here[k], here[k + 1]); } } } #endif } } } } } // Turn the arc representations of the polygons back into standard polygon geometries for (size_t i = 0; i < partials.size(); i++) { if (partials[i].t == VT_POLYGON) { partials[i].geoms.resize(0); partials[i].geoms.push_back(drawvec()); bool at_start = true; draw first(-1, 0, 0); for (size_t j = 0; j < partials[i].arc_polygon.size(); j++) { ssize_t p = partials[i].arc_polygon[j]; if (p == 0) { if (first.op >= 0) { partials[i].geoms[0].push_back(first); first = draw(-1, 0, 0); } at_start = true; } else if (p > 0) { for (size_t k = 0; k + 1 < simplified_arcs[p].size(); k++) { if (at_start) { partials[i].geoms[0].push_back(draw(VT_MOVETO, simplified_arcs[p][k].x, simplified_arcs[p][k].y)); first = draw(VT_LINETO, simplified_arcs[p][k].x, simplified_arcs[p][k].y); } else { partials[i].geoms[0].push_back(draw(VT_LINETO, simplified_arcs[p][k].x, simplified_arcs[p][k].y)); } at_start = 0; } } else { /* p < 0 */ for (ssize_t k = simplified_arcs[-p].size() - 1; k > 0; k--) { if (at_start) { partials[i].geoms[0].push_back(draw(VT_MOVETO, simplified_arcs[-p][k].x, simplified_arcs[-p][k].y)); first = draw(VT_LINETO, simplified_arcs[-p][k].x, simplified_arcs[-p][k].y); } else { partials[i].geoms[0].push_back(draw(VT_LINETO, simplified_arcs[-p][k].x, simplified_arcs[-p][k].y)); } at_start = 0; } } } } } if (merged >= merge_count) { return true; } else { return false; } } unsigned long long choose_mingap(std::vector const &indices, double f) { unsigned long long bot = ULLONG_MAX; unsigned long long top = 0; for (size_t i = 0; i < indices.size(); i++) { if (i > 0 && indices[i] >= indices[i - 1]) { if (indices[i] - indices[i - 1] > top) { top = indices[i] - indices[i - 1]; } if (indices[i] - indices[i - 1] < bot) { bot = indices[i] - indices[i - 1]; } } } size_t want = indices.size() * f; while (top - bot > 2) { unsigned long long guess = bot / 2 + top / 2; size_t count = 0; unsigned long long prev = 0; for (size_t i = 0; i < indices.size(); i++) { if (indices[i] - prev >= guess) { count++; prev = indices[i]; } } if (count > want) { bot = guess; } else if (count < want) { top = guess; } else { return guess; } } return top; } long long choose_minextent(std::vector &extents, double f) { std::sort(extents.begin(), extents.end()); return extents[(extents.size() - 1) * (1 - f)]; } struct write_tile_args { struct task *tasks; char *metabase; char *stringpool; int min_detail; int basezoom; sqlite3 *outdb; const char *outdir; double droprate; int buffer; const char *fname; FILE **geomfile; double todo; volatile long long *along; double gamma; double gamma_out; int child_shards; int *geomfd; off_t *geom_size; volatile unsigned *midx; volatile unsigned *midy; int maxzoom; int minzoom; int full_detail; int low_detail; double simplification; volatile long long *most; long long *meta_off; long long *pool_off; unsigned *initial_x; unsigned *initial_y; volatile int *running; int err; std::vector> *layermaps; std::vector> *layer_unmaps; size_t pass; size_t passes; unsigned long long mingap; unsigned long long mingap_out; long long minextent; long long minextent_out; double fraction; double fraction_out; }; long long write_tile(FILE *geoms, long long *geompos_in, char *metabase, char *stringpool, int z, unsigned tx, unsigned ty, int detail, int min_detail, int basezoom, sqlite3 *outdb, const char *outdir, double droprate, int buffer, const char *fname, FILE **geomfile, int minzoom, int maxzoom, double todo, volatile long long *along, long long alongminus, double gamma, int child_shards, long long *meta_off, long long *pool_off, unsigned *initial_x, unsigned *initial_y, volatile int *running, double simplification, std::vector> *layermaps, std::vector> *layer_unmaps, size_t pass, size_t passes, unsigned long long mingap, long long minextent, double fraction, write_tile_args *arg) { int line_detail; double merge_fraction = 1; double mingap_fraction = 1; double minextent_fraction = 1; long long og = *geompos_in; // XXX is there a way to do this without floating point? int max_zoom_increment = std::log(child_shards) / std::log(4); if (child_shards < 4 || max_zoom_increment < 1) { fprintf(stderr, "Internal error: %d shards, max zoom increment %d\n", child_shards, max_zoom_increment); exit(EXIT_FAILURE); } if ((((child_shards - 1) << 1) & child_shards) != child_shards) { fprintf(stderr, "Internal error: %d shards not a power of 2\n", child_shards); exit(EXIT_FAILURE); } int nextzoom = z + 1; if (nextzoom < minzoom) { if (z + max_zoom_increment > minzoom) { nextzoom = minzoom; } else { nextzoom = z + max_zoom_increment; } } static volatile double oprogress = 0; bool has_polygons = false; bool first_time = true; // This only loops if the tile data didn't fit, in which case the detail // goes down and the progress indicator goes backward for the next try. for (line_detail = detail; line_detail >= min_detail || line_detail == detail; line_detail--, oprogress = 0) { long long count = 0; double accum_area = 0; double fraction_accum = 0; unsigned long long previndex = 0, density_previndex = 0, merge_previndex = 0; double scale = (double) (1LL << (64 - 2 * (z + 8))); double gap = 0, density_gap = 0; double spacing = 0; long long original_features = 0; long long unclipped_features = 0; std::vector partials; std::map> layers; std::vector indices; std::vector extents; int within[child_shards]; long long geompos[child_shards]; memset(within, '\0', child_shards * sizeof(int)); memset(geompos, '\0', child_shards * sizeof(long long)); if (*geompos_in != og) { if (fseek(geoms, og, SEEK_SET) != 0) { perror("fseek geom"); exit(EXIT_FAILURE); } *geompos_in = og; } while (1) { signed char t; deserialize_byte_io(geoms, &t, geompos_in); if (t < 0) { break; } long long xlayer; deserialize_long_long_io(geoms, &xlayer, geompos_in); long long original_seq = 0; if (xlayer & (1 << 5)) { deserialize_long_long_io(geoms, &original_seq, geompos_in); } int tippecanoe_minzoom = -1, tippecanoe_maxzoom = -1; unsigned long long id = 0; bool has_id = false; if (xlayer & (1 << 1)) { deserialize_int_io(geoms, &tippecanoe_minzoom, geompos_in); } if (xlayer & (1 << 0)) { deserialize_int_io(geoms, &tippecanoe_maxzoom, geompos_in); } if (xlayer & (1 << 2)) { has_id = true; deserialize_ulong_long_io(geoms, &id, geompos_in); } long long layer = xlayer >> 6; int segment; deserialize_int_io(geoms, &segment, geompos_in); long long bbox[4]; unsigned long long index = 0; long long extent = 0; drawvec geom = decode_geometry(geoms, geompos_in, z, tx, ty, line_detail, bbox, initial_x[segment], initial_y[segment]); if (xlayer & (1 << 4)) { deserialize_ulong_long_io(geoms, &index, geompos_in); } if (xlayer & (1 << 3)) { deserialize_long_long_io(geoms, &extent, geompos_in); } long long metastart = 0; int m; deserialize_int_io(geoms, &m, geompos_in); if (m != 0) { deserialize_long_long_io(geoms, &metastart, geompos_in); } char *meta = NULL; std::vector metakeys, metavals; if (metastart >= 0) { meta = metabase + metastart + meta_off[segment]; for (int i = 0; i < m; i++) { long long k, v; deserialize_long_long(&meta, &k); deserialize_long_long(&meta, &v); metakeys.push_back(k); metavals.push_back(v); } } else { for (int i = 0; i < m; i++) { long long k, v; deserialize_long_long_io(geoms, &k, geompos_in); deserialize_long_long_io(geoms, &v, geompos_in); metakeys.push_back(k); metavals.push_back(v); } } signed char feature_minzoom; deserialize_byte_io(geoms, &feature_minzoom, geompos_in); double progress = floor(((((*geompos_in + *along - alongminus) / (double) todo) + (pass - (2 - passes))) / passes + z) / (maxzoom + 1) * 1000) / 10; if (progress >= oprogress + 0.1) { if (!quiet) { fprintf(stderr, " %3.1f%% %d/%u/%u \r", progress, z, tx, ty); } oprogress = progress; } original_features++; int quick = quick_check(bbox, z, line_detail, buffer); if (quick == 0) { continue; } if (z == 0) { if (bbox[0] < 0 || bbox[2] > 1LL << 32) { // If the geometry extends off the edge of the world, concatenate on another copy // shifted by 360 degrees, and then make sure both copies get clipped down to size. size_t n = geom.size(); if (bbox[0] < 0) { for (size_t i = 0; i < n; i++) { geom.push_back(draw(geom[i].op, geom[i].x + (1LL << 32), geom[i].y)); } } if (bbox[2] > 1LL << 32) { for (size_t i = 0; i < n; i++) { geom.push_back(draw(geom[i].op, geom[i].x - (1LL << 32), geom[i].y)); } } bbox[0] = 0; bbox[2] = 1LL << 32; quick = -1; } } // Can't accept the quick check if guaranteeing no duplication, since the // overlap might have been in the buffer. if (quick != 1 || prevent[P_DUPLICATION]) { drawvec clipped; // Do the clipping, even if we are going to include the whole feature, // so that we can know whether the feature itself, or only the feature's // bounding box, touches the tile. if (t == VT_LINE) { clipped = clip_lines(geom, z, line_detail, buffer); } if (t == VT_POLYGON) { clipped = simple_clip_poly(geom, z, line_detail, buffer); } if (t == VT_POINT) { clipped = clip_point(geom, z, line_detail, buffer); } clipped = remove_noop(clipped, t, 0); // Must clip at z0 even if we don't want clipping, to handle features // that are duplicated across the date line if (prevent[P_DUPLICATION] && z != 0) { if (point_within_tile((bbox[0] + bbox[2]) / 2, (bbox[1] + bbox[3]) / 2, z, line_detail, buffer)) { // geom is unchanged } else { geom.clear(); } } else if (prevent[P_CLIPPING] && z != 0) { if (clipped.size() == 0) { geom.clear(); } else { // geom is unchanged } } else { geom = clipped; } } if (geom.size() > 0) { unclipped_features++; } if (first_time && pass == 1) { /* only write out the next zoom once, even if we retry */ if (tippecanoe_maxzoom == -1 || tippecanoe_maxzoom >= nextzoom) { rewrite(geom, z, nextzoom, maxzoom, bbox, tx, ty, buffer, line_detail, within, geompos, geomfile, fname, t, layer, metastart, feature_minzoom, child_shards, max_zoom_increment, original_seq, tippecanoe_minzoom, tippecanoe_maxzoom, segment, initial_x, initial_y, m, metakeys, metavals, has_id, id, index, extent); } } if (z < minzoom) { continue; } if (tippecanoe_minzoom != -1 && z < tippecanoe_minzoom) { continue; } if (tippecanoe_maxzoom != -1 && z > tippecanoe_maxzoom) { continue; } if (tippecanoe_minzoom == -1 && z < feature_minzoom) { continue; } if (gamma > 0) { if (manage_gap(index, &previndex, scale, gamma, &gap)) { continue; } } if (additional[A_DROP_DENSEST_AS_NEEDED]) { indices.push_back(index); if (index - merge_previndex < mingap) { continue; } } if (additional[A_DROP_SMALLEST_AS_NEEDED]) { extents.push_back(extent); if (extent <= minextent && t != VT_POINT) { continue; } } if (additional[A_CALCULATE_FEATURE_DENSITY]) { // Gamma is always 1 for this calculation so there is a reasonable // interpretation when no features are being dropped. // The spacing is only calculated if a feature would be retained by // that standard, so that duplicates aren't reported as infinitely dense. double o_density_previndex = density_previndex; if (!manage_gap(index, &density_previndex, scale, 1, &density_gap)) { spacing = (index - o_density_previndex) / scale; } } fraction_accum += fraction; if (fraction_accum < 1) { continue; } fraction_accum -= 1; bool reduced = false; if (t == VT_POLYGON) { if (!prevent[P_TINY_POLYGON_REDUCTION] && !additional[A_GRID_LOW_ZOOMS]) { geom = reduce_tiny_poly(geom, z, line_detail, &reduced, &accum_area); } has_polygons = true; } if (geom.size() > 0) { partial p; p.geoms.push_back(geom); p.layer = layer; p.m = m; p.meta = meta; p.t = t; p.segment = segment; p.original_seq = original_seq; p.reduced = reduced; p.z = z; p.line_detail = line_detail; p.maxzoom = maxzoom; p.keys = metakeys; p.values = metavals; p.spacing = spacing; p.simplification = simplification; p.id = id; p.has_id = has_id; p.index2 = merge_previndex; p.index = index; p.renamed = -1; partials.push_back(p); } merge_previndex = index; } first_time = false; bool merge_successful = true; if (additional[A_DETECT_SHARED_BORDERS] || (additional[A_MERGE_POLYGONS_AS_NEEDED] && merge_fraction < 1)) { merge_successful = find_common_edges(partials, z, line_detail, simplification, maxzoom, merge_fraction); } int tasks = ceil((double) CPUS / *running); if (tasks < 1) { tasks = 1; } pthread_t pthreads[tasks]; partial_arg args[tasks]; for (int i = 0; i < tasks; i++) { args[i].task = i; args[i].tasks = tasks; args[i].partials = &partials; if (tasks > 1) { if (pthread_create(&pthreads[i], NULL, partial_feature_worker, &args[i]) != 0) { perror("pthread_create"); exit(EXIT_FAILURE); } } else { partial_feature_worker(&args[i]); } } if (tasks > 1) { for (int i = 0; i < tasks; i++) { void *retval; if (pthread_join(pthreads[i], &retval) != 0) { perror("pthread_join"); } } } for (size_t i = 0; i < partials.size(); i++) { std::vector &pgeoms = partials[i].geoms; signed char t = partials[i].t; long long original_seq = partials[i].original_seq; // A complex polygon may have been split up into multiple geometries. // Break them out into multiple features if necessary. for (size_t j = 0; j < pgeoms.size(); j++) { if (t == VT_POINT || draws_something(pgeoms[j])) { struct coalesce c; c.type = t; c.index = partials[i].index; c.index2 = partials[i].index2; c.geom = pgeoms[j]; pgeoms[j].clear(); c.coalesced = false; c.original_seq = original_seq; c.m = partials[i].m; c.meta = partials[i].meta; c.stringpool = stringpool + pool_off[partials[i].segment]; c.keys = partials[i].keys; c.values = partials[i].values; c.spacing = partials[i].spacing; c.id = partials[i].id; c.has_id = partials[i].has_id; // printf("segment %d layer %lld is %s\n", partials[i].segment, partials[i].layer, (*layer_unmaps)[partials[i].segment][partials[i].layer].c_str()); std::string layername = (*layer_unmaps)[partials[i].segment][partials[i].layer]; if (layers.count(layername) == 0) { layers.insert(std::pair>(layername, std::vector())); } auto l = layers.find(layername); if (l == layers.end()) { fprintf(stderr, "Internal error: couldn't find layer %s\n", layername.c_str()); fprintf(stderr, "segment %d\n", partials[i].segment); fprintf(stderr, "layer %lld\n", partials[i].layer); exit(EXIT_FAILURE); } l->second.push_back(c); } } } partials.clear(); int j; for (j = 0; j < child_shards; j++) { if (within[j]) { serialize_byte(geomfile[j], -2, &geompos[j], fname); within[j] = 0; } } for (auto layer_iterator = layers.begin(); layer_iterator != layers.end(); ++layer_iterator) { std::vector &layer_features = layer_iterator->second; if (additional[A_REORDER]) { std::sort(layer_features.begin(), layer_features.end()); } std::vector out; if (layer_features.size() > 0) { out.push_back(layer_features[0]); } for (size_t x = 1; x < layer_features.size(); x++) { size_t y = out.size() - 1; #if 0 if (out.size() > 0 && coalcmp(&layer_features[x], &out[y]) < 0) { fprintf(stderr, "\nfeature out of order\n"); } #endif if (additional[A_COALESCE] && out.size() > 0 && out[y].geom.size() + layer_features[x].geom.size() < 700 && coalcmp(&layer_features[x], &out[y]) == 0 && layer_features[x].type != VT_POINT) { for (size_t g = 0; g < layer_features[x].geom.size(); g++) { out[y].geom.push_back(layer_features[x].geom[g]); } out[y].coalesced = true; } else { out.push_back(layer_features[x]); } } layer_features = out; out.clear(); for (size_t x = 0; x < layer_features.size(); x++) { if (layer_features[x].coalesced && layer_features[x].type == VT_LINE) { layer_features[x].geom = remove_noop(layer_features[x].geom, layer_features[x].type, 0); layer_features[x].geom = simplify_lines(layer_features[x].geom, 32, 0, !(prevent[P_CLIPPING] || prevent[P_DUPLICATION]), simplification, layer_features[x].type == VT_POLYGON ? 4 : 0); } if (layer_features[x].type == VT_POLYGON) { if (layer_features[x].coalesced) { layer_features[x].geom = clean_or_clip_poly(layer_features[x].geom, 0, 0, 0, false); } layer_features[x].geom = close_poly(layer_features[x].geom); } if (layer_features[x].geom.size() > 0) { out.push_back(layer_features[x]); } } layer_features = out; if (prevent[P_INPUT_ORDER]) { std::sort(layer_features.begin(), layer_features.end(), preservecmp); } } mvt_tile tile; for (auto layer_iterator = layers.begin(); layer_iterator != layers.end(); ++layer_iterator) { std::vector &layer_features = layer_iterator->second; mvt_layer layer; layer.name = layer_iterator->first; layer.version = 2; layer.extent = 1 << line_detail; for (size_t x = 0; x < layer_features.size(); x++) { mvt_feature feature; if (layer_features[x].type == VT_LINE || layer_features[x].type == VT_POLYGON) { layer_features[x].geom = remove_noop(layer_features[x].geom, layer_features[x].type, 0); } if (layer_features[x].geom.size() == 0) { continue; } feature.type = layer_features[x].type; feature.geometry = to_feature(layer_features[x].geom); count += layer_features[x].geom.size(); layer_features[x].geom.clear(); feature.id = layer_features[x].id; feature.has_id = layer_features[x].has_id; decode_meta(layer_features[x].m, layer_features[x].keys, layer_features[x].values, layer_features[x].stringpool, layer, feature); if (additional[A_CALCULATE_FEATURE_DENSITY]) { int glow = 255; if (layer_features[x].spacing > 0) { glow = (1 / layer_features[x].spacing); if (glow > 255) { glow = 255; } } mvt_value v; v.type = mvt_sint; v.numeric_value.sint_value = glow; layer.tag(feature, "tippecanoe_feature_density", v); } layer.features.push_back(feature); } if (layer.features.size() > 0) { tile.layers.push_back(layer); } } if (z == 0 && unclipped_features < original_features / 2) { fprintf(stderr, "\n\nMore than half the features were clipped away at zoom level 0.\n"); fprintf(stderr, "Is your data in the wrong projection? It should be in WGS84/EPSG:4326.\n"); } long long totalsize = 0; for (auto layer_iterator = layers.begin(); layer_iterator != layers.end(); ++layer_iterator) { std::vector &layer_features = layer_iterator->second; totalsize += layer_features.size(); } double progress = floor(((((*geompos_in + *along - alongminus) / (double) todo) + (pass - (2 - passes))) / passes + z) / (maxzoom + 1) * 1000) / 10; if (progress >= oprogress + 0.1) { if (!quiet) { fprintf(stderr, " %3.1f%% %d/%u/%u \r", progress, z, tx, ty); } oprogress = progress; } if (totalsize > 0 && tile.layers.size() > 0) { if (totalsize > 200000 && !prevent[P_FEATURE_LIMIT]) { fprintf(stderr, "tile %d/%u/%u has %lld features, >200000 \n", z, tx, ty, totalsize); if (has_polygons && additional[A_MERGE_POLYGONS_AS_NEEDED] && merge_fraction > .05 && merge_successful) { merge_fraction = merge_fraction * 200000 / tile.layers.size() * 0.95; if (!quiet) { fprintf(stderr, "Going to try merging %0.2f%% of the polygons to make it fit\n", 100 - merge_fraction * 100); } line_detail++; // to keep it the same when the loop decrements it continue; } else if (additional[A_INCREASE_GAMMA_AS_NEEDED] && gamma < 10) { if (gamma < 1) { gamma = 1; } else { gamma = gamma * 1.25; } if (gamma > arg->gamma_out) { arg->gamma_out = gamma; } if (!quiet) { fprintf(stderr, "Going to try gamma of %0.3f to make it fit\n", gamma); } line_detail++; // to keep it the same when the loop decrements it continue; } else if (additional[A_DROP_DENSEST_AS_NEEDED]) { mingap_fraction = mingap_fraction * 200000.0 / totalsize * 0.90; mingap = choose_mingap(indices, mingap_fraction); if (mingap > arg->mingap_out) { arg->mingap_out = mingap; } if (!quiet) { fprintf(stderr, "Going to try keeping the sparsest %0.2f%% of the features to make it fit\n", mingap_fraction * 100.0); } line_detail++; continue; } else if (additional[A_DROP_SMALLEST_AS_NEEDED]) { minextent_fraction = minextent_fraction * 200000.0 / totalsize * 0.90; long long m = choose_minextent(extents, minextent_fraction); if (m != minextent) { minextent = m; if (minextent > arg->minextent_out) { arg->minextent_out = minextent; } if (!quiet) { fprintf(stderr, "Going to try keeping the biggest %0.2f%% of the features to make it fit\n", minextent_fraction * 100.0); } line_detail++; continue; } } else if (prevent[P_DYNAMIC_DROP] || additional[A_DROP_FRACTION_AS_NEEDED]) { fraction = fraction * 200000 / totalsize * 0.95; if (!quiet) { fprintf(stderr, "Going to try keeping %0.2f%% of the features to make it fit\n", fraction * 100); } if (additional[A_DROP_FRACTION_AS_NEEDED] && fraction < arg->fraction_out) { arg->fraction_out = fraction; } line_detail++; // to keep it the same when the loop decrements it continue; } else { fprintf(stderr, "Try using -B (and --drop-lines or --drop-polygons if needed) to set a higher base zoom level.\n"); return -1; } } std::string compressed; std::string pbf = tile.encode(); if (!prevent[P_TILE_COMPRESSION]) { compress(pbf, compressed); } else { compressed = pbf; } if (compressed.size() > max_tile_size && !prevent[P_KILOBYTE_LIMIT]) { if (!quiet) { fprintf(stderr, "tile %d/%u/%u size is %lld with detail %d, >%zu \n", z, tx, ty, (long long) compressed.size(), line_detail, max_tile_size); } if (has_polygons && additional[A_MERGE_POLYGONS_AS_NEEDED] && merge_fraction > .05 && merge_successful) { merge_fraction = merge_fraction * max_tile_size / compressed.size() * 0.95; if (!quiet) { fprintf(stderr, "Going to try merging %0.2f%% of the polygons to make it fit\n", 100 - merge_fraction * 100); } line_detail++; // to keep it the same when the loop decrements it } else if (additional[A_INCREASE_GAMMA_AS_NEEDED] && gamma < 10) { if (gamma < 1) { gamma = 1; } else { gamma = gamma * 1.25; } if (gamma > arg->gamma_out) { arg->gamma_out = gamma; } if (!quiet) { fprintf(stderr, "Going to try gamma of %0.3f to make it fit\n", gamma); } line_detail++; // to keep it the same when the loop decrements it } else if (additional[A_DROP_DENSEST_AS_NEEDED]) { mingap_fraction = mingap_fraction * max_tile_size / compressed.size() * 0.90; mingap = choose_mingap(indices, mingap_fraction); if (mingap > arg->mingap_out) { arg->mingap_out = mingap; } if (!quiet) { fprintf(stderr, "Going to try keeping the sparsest %0.2f%% of the features to make it fit\n", mingap_fraction * 100.0); } line_detail++; } else if (additional[A_DROP_SMALLEST_AS_NEEDED]) { minextent_fraction = minextent_fraction * max_tile_size / compressed.size() * 0.90; long long m = choose_minextent(extents, minextent_fraction); if (m != minextent) { minextent = m; if (minextent > arg->minextent_out) { arg->minextent_out = minextent; } if (!quiet) { fprintf(stderr, "Going to try keeping the biggest %0.2f%% of the features to make it fit\n", minextent_fraction * 100.0); } line_detail++; continue; } } else if (prevent[P_DYNAMIC_DROP] || additional[A_DROP_FRACTION_AS_NEEDED]) { // The 95% is a guess to avoid too many retries // and probably actually varies based on how much duplicated metadata there is fraction = fraction * max_tile_size / compressed.size() * 0.95; if (!quiet) { fprintf(stderr, "Going to try keeping %0.2f%% of the features to make it fit\n", fraction * 100); } if (additional[A_DROP_FRACTION_AS_NEEDED] && fraction < arg->fraction_out) { arg->fraction_out = fraction; } line_detail++; // to keep it the same when the loop decrements it } } else { if (pass == 1) { if (pthread_mutex_lock(&db_lock) != 0) { perror("pthread_mutex_lock"); exit(EXIT_FAILURE); } if (outdb != NULL) { mbtiles_write_tile(outdb, z, tx, ty, compressed.data(), compressed.size()); } else if (outdir != NULL) { write_raw_tile(outdir, z, tx, ty, compressed); } if (pthread_mutex_unlock(&db_lock) != 0) { perror("pthread_mutex_unlock"); exit(EXIT_FAILURE); } } return count; } } else { return count; } } fprintf(stderr, "could not make tile %d/%u/%u small enough\n", z, tx, ty); return -1; } struct task { int fileno; struct task *next; }; void *run_thread(void *vargs) { write_tile_args *arg = (write_tile_args *) vargs; struct task *task; for (task = arg->tasks; task != NULL; task = task->next) { int j = task->fileno; if (arg->geomfd[j] < 0) { // only one source file for zoom level 0 continue; } if (arg->geom_size[j] == 0) { continue; } // printf("%lld of geom_size\n", (long long) geom_size[j]); FILE *geom = fdopen(arg->geomfd[j], "rb"); if (geom == NULL) { perror("mmap geom"); exit(EXIT_FAILURE); } long long geompos = 0; long long prevgeom = 0; while (1) { int z; unsigned x, y; if (!deserialize_int_io(geom, &z, &geompos)) { break; } deserialize_uint_io(geom, &x, &geompos); deserialize_uint_io(geom, &y, &geompos); // fprintf(stderr, "%d/%u/%u\n", z, x, y); long long len = write_tile(geom, &geompos, arg->metabase, arg->stringpool, z, x, y, z == arg->maxzoom ? arg->full_detail : arg->low_detail, arg->min_detail, arg->basezoom, arg->outdb, arg->outdir, arg->droprate, arg->buffer, arg->fname, arg->geomfile, arg->minzoom, arg->maxzoom, arg->todo, arg->along, geompos, arg->gamma, arg->child_shards, arg->meta_off, arg->pool_off, arg->initial_x, arg->initial_y, arg->running, arg->simplification, arg->layermaps, arg->layer_unmaps, arg->pass, arg->passes, arg->mingap, arg->minextent, arg->fraction, arg); if (len < 0) { int *err = &arg->err; *err = z - 1; return err; } if (pthread_mutex_lock(&var_lock) != 0) { perror("pthread_mutex_lock"); exit(EXIT_FAILURE); } if (z == arg->maxzoom) { if (len > *arg->most) { *arg->midx = x; *arg->midy = y; *arg->most = len; } else if (len == *arg->most) { unsigned long long a = (((unsigned long long) x) << 32) | y; unsigned long long b = (((unsigned long long) *arg->midx) << 32) | *arg->midy; if (a < b) { *arg->midx = x; *arg->midy = y; *arg->most = len; } } } *arg->along += geompos - prevgeom; prevgeom = geompos; if (pthread_mutex_unlock(&var_lock) != 0) { perror("pthread_mutex_unlock"); exit(EXIT_FAILURE); } } if (arg->pass == 1) { // Since the fclose() has closed the underlying file descriptor arg->geomfd[j] = -1; } else { int newfd = dup(arg->geomfd[j]); if (newfd < 0) { perror("dup geometry"); exit(EXIT_FAILURE); } if (lseek(newfd, 0, SEEK_SET) < 0) { perror("lseek geometry"); exit(EXIT_FAILURE); } arg->geomfd[j] = newfd; } if (fclose(geom) != 0) { perror("close geom"); exit(EXIT_FAILURE); } } arg->running--; return NULL; } int traverse_zooms(int *geomfd, off_t *geom_size, char *metabase, char *stringpool, unsigned *midx, unsigned *midy, int maxzoom, int minzoom, int basezoom, sqlite3 *outdb, const char *outdir, double droprate, int buffer, const char *fname, const char *tmpdir, double gamma, int full_detail, int low_detail, int min_detail, long long *meta_off, long long *pool_off, unsigned *initial_x, unsigned *initial_y, double simplification, std::vector> &layermaps) { // Table to map segment and layer number back to layer name std::vector> layer_unmaps; for (size_t seg = 0; seg < layermaps.size(); seg++) { layer_unmaps.push_back(std::vector()); for (auto a = layermaps[seg].begin(); a != layermaps[seg].end(); ++a) { if (a->second.id >= layer_unmaps[seg].size()) { layer_unmaps[seg].resize(a->second.id + 1); } layer_unmaps[seg][a->second.id] = a->first; } } int i; for (i = 0; i <= maxzoom; i++) { long long most = 0; FILE *sub[TEMP_FILES]; int subfd[TEMP_FILES]; for (size_t j = 0; j < TEMP_FILES; j++) { char geomname[strlen(tmpdir) + strlen("/geom.XXXXXXXX" XSTRINGIFY(INT_MAX)) + 1]; sprintf(geomname, "%s/geom%zu.XXXXXXXX", tmpdir, j); subfd[j] = mkstemp(geomname); // printf("%s\n", geomname); if (subfd[j] < 0) { perror(geomname); exit(EXIT_FAILURE); } sub[j] = fopen(geomname, "wb"); if (sub[j] == NULL) { perror(geomname); exit(EXIT_FAILURE); } unlink(geomname); } size_t useful_threads = 0; long long todo = 0; for (size_t j = 0; j < TEMP_FILES; j++) { todo += geom_size[j]; if (geom_size[j] > 0) { useful_threads++; } } size_t threads = CPUS; if (threads > TEMP_FILES / 4) { threads = TEMP_FILES / 4; } // XXX is it useful to divide further if we know we are skipping // some zoom levels? Is it faster to have fewer CPUs working on // sharding, but more deeply, or fewer CPUs, less deeply? if (threads > useful_threads) { threads = useful_threads; } // Round down to a power of 2 for (int e = 0; e < 30; e++) { if (threads >= (1U << e) && threads < (1U << (e + 1))) { threads = 1U << e; break; } } if (threads >= (1U << 30)) { threads = 1U << 30; } // Assign temporary files to threads struct task tasks[TEMP_FILES]; struct dispatch { struct task *tasks; long long todo; struct dispatch *next; } dispatches[threads]; struct dispatch *dispatch_head = &dispatches[0]; for (size_t j = 0; j < threads; j++) { dispatches[j].tasks = NULL; dispatches[j].todo = 0; if (j + 1 < threads) { dispatches[j].next = &dispatches[j + 1]; } else { dispatches[j].next = NULL; } } for (size_t j = 0; j < TEMP_FILES; j++) { if (geom_size[j] == 0) { continue; } tasks[j].fileno = j; tasks[j].next = dispatch_head->tasks; dispatch_head->tasks = &tasks[j]; dispatch_head->todo += geom_size[j]; struct dispatch *here = dispatch_head; dispatch_head = dispatch_head->next; dispatch **d; for (d = &dispatch_head; *d != NULL; d = &((*d)->next)) { if (here->todo < (*d)->todo) { break; } } here->next = *d; *d = here; } int err = INT_MAX; size_t start = 1; if (additional[A_INCREASE_GAMMA_AS_NEEDED] || additional[A_DROP_DENSEST_AS_NEEDED] || additional[A_DROP_FRACTION_AS_NEEDED] || additional[A_DROP_SMALLEST_AS_NEEDED]) { start = 0; } double zoom_gamma = gamma; unsigned long long zoom_mingap = 0; long long zoom_minextent = 0; double zoom_fraction = 1; for (size_t pass = start; pass < 2; pass++) { pthread_t pthreads[threads]; write_tile_args args[threads]; int running = threads; long long along = 0; for (size_t thread = 0; thread < threads; thread++) { args[thread].metabase = metabase; args[thread].stringpool = stringpool; args[thread].min_detail = min_detail; args[thread].basezoom = basezoom; args[thread].outdb = outdb; // locked with db_lock args[thread].outdir = outdir; args[thread].droprate = droprate; args[thread].buffer = buffer; args[thread].fname = fname; args[thread].geomfile = sub + thread * (TEMP_FILES / threads); args[thread].todo = todo; args[thread].along = &along; // locked with var_lock args[thread].gamma = zoom_gamma; args[thread].gamma_out = zoom_gamma; args[thread].mingap = zoom_mingap; args[thread].mingap_out = zoom_mingap; args[thread].minextent = zoom_minextent; args[thread].minextent_out = zoom_minextent; args[thread].fraction = zoom_fraction; args[thread].fraction_out = zoom_fraction; args[thread].child_shards = TEMP_FILES / threads; args[thread].simplification = simplification; args[thread].geomfd = geomfd; args[thread].geom_size = geom_size; args[thread].midx = midx; // locked with var_lock args[thread].midy = midy; // locked with var_lock args[thread].maxzoom = maxzoom; args[thread].minzoom = minzoom; args[thread].full_detail = full_detail; args[thread].low_detail = low_detail; args[thread].most = &most; // locked with var_lock args[thread].meta_off = meta_off; args[thread].pool_off = pool_off; args[thread].initial_x = initial_x; args[thread].initial_y = initial_y; args[thread].layermaps = &layermaps; args[thread].layer_unmaps = &layer_unmaps; args[thread].tasks = dispatches[thread].tasks; args[thread].running = &running; args[thread].pass = pass; args[thread].passes = 2 - start; if (pthread_create(&pthreads[thread], NULL, run_thread, &args[thread]) != 0) { perror("pthread_create"); exit(EXIT_FAILURE); } } for (size_t thread = 0; thread < threads; thread++) { void *retval; if (pthread_join(pthreads[thread], &retval) != 0) { perror("pthread_join"); } if (retval != NULL) { err = *((int *) retval); } if (args[thread].gamma_out > zoom_gamma) { zoom_gamma = args[thread].gamma_out; } if (args[thread].mingap_out > zoom_mingap) { zoom_mingap = args[thread].mingap_out; } if (args[thread].minextent_out > zoom_minextent) { zoom_minextent = args[thread].minextent_out; } if (args[thread].fraction_out < zoom_fraction) { zoom_fraction = args[thread].fraction_out; } } } for (size_t j = 0; j < TEMP_FILES; j++) { // Can be < 0 if there is only one source file, at z0 if (geomfd[j] >= 0) { if (close(geomfd[j]) != 0) { perror("close geom"); exit(EXIT_FAILURE); } } if (fclose(sub[j]) != 0) { perror("close subfile"); exit(EXIT_FAILURE); } struct stat geomst; if (fstat(subfd[j], &geomst) != 0) { perror("stat geom\n"); exit(EXIT_FAILURE); } geomfd[j] = subfd[j]; geom_size[j] = geomst.st_size; } if (err != INT_MAX) { return err; } } for (size_t j = 0; j < TEMP_FILES; j++) { // Can be < 0 if there is only one source file, at z0 if (geomfd[j] >= 0) { if (close(geomfd[j]) != 0) { perror("close geom"); exit(EXIT_FAILURE); } } } if (!quiet) { fprintf(stderr, "\n"); } return maxzoom; }