Skip to main content
  • Home
  • Development
  • Documentation
  • Donate
  • Operational login
  • Browse the archive

swh logo
SoftwareHeritage
Software
Heritage
Archive
Features
  • Search

  • Downloads

  • Save code now

  • Add forge now

  • Help

  • c75bac1
  • /
  • gpflow
  • /
  • mean_functions.py
Raw File Download
Permalinks

To reference or cite the objects present in the Software Heritage archive, permalinks based on SoftWare Hash IDentifiers (SWHIDs) must be used.
Select below a type of object currently browsed in order to display its associated SWHID and permalink.

  • content
  • directory
content badge Iframe embedding
swh:1:cnt:9e2ce194817ea9b31f45849df2ea38e6d6e0ccd6
directory badge Iframe embedding
swh:1:dir:44ed0910f9c7860f73f6503dca97dc9d390a9a7f
Citations

This interface enables to generate software citations, provided that the root directory of browsed objects contains a citation.cff or codemeta.json file.
Select below a type of object currently browsed in order to generate citations for them.

  • content
  • directory
Generate software citation in BibTex format (requires biblatex-software package)
Generating citation ...
Generate software citation in BibTex format (requires biblatex-software package)
Generating citation ...
mean_functions.py
# Copyright 2016-2020 The GPflow Contributors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

"""
Throughout GPflow, by default, latent functions being modelled with Gaussian
processes are assumed to have zero mean, f ~ GP(0, k(x,x')).

In some cases we may wish to model only the deviation from a fixed function
with a Gaussian process.  For flexibility this fixed function could be both
input dependent and parameterised function, μ(x; θ),
with some unknown parameters θ, resulting in f ~ GP(μ(x;θ), k(x,x')).

The GPflow :class:`MeanFunction <gpflow.mean_functions.MeanFunction>` class
allows this to be done whilst additionally learning parameters of the
parametric function.
"""

from typing import Collection, Optional

import numpy as np
import tensorflow as tf

from .base import Module, Parameter, TensorType
from .config import default_float, default_int
from .experimental.check_shapes import check_shapes, inherit_check_shapes


class MeanFunction(Module):
    """
    The base mean function class.
    To implement a mean function, write the __call__ method. This takes a
    tensor X and returns a tensor m(X). In accordance with the GPflow
    standard, each row of X represents one datum, and each row of Y is computed
    independently for each row of X.

    MeanFunction classes can have parameters, see the Linear class for an
    example.
    """

    @check_shapes(
        "X: [batch..., D]",
        "return: [batch..., Q]",
    )
    def __call__(self, X: TensorType) -> tf.Tensor:
        raise NotImplementedError("Implement the __call__ method for this mean function")

    def __add__(self, other: "MeanFunction") -> "MeanFunction":
        return Additive(self, other)

    def __mul__(self, other: "MeanFunction") -> "MeanFunction":
        return Product(self, other)


class Linear(MeanFunction):
    """
    y_i = A x_i + b
    """

    @check_shapes(
        "A: [broadcast D, broadcast Q]",
        "b: [broadcast Q]",
    )
    def __init__(self, A: TensorType = None, b: TensorType = None) -> None:
        """
        A is a matrix which maps each element of X to Y, b is an additive
        constant.
        """
        MeanFunction.__init__(self)
        A = np.ones((1, 1), dtype=default_float()) if A is None else A
        b = np.zeros(1, dtype=default_float()) if b is None else b
        self.A = Parameter(np.atleast_2d(A))
        self.b = Parameter(b)

    @inherit_check_shapes
    def __call__(self, X: TensorType) -> tf.Tensor:
        return tf.tensordot(X, self.A, [[-1], [0]]) + self.b


class Identity(Linear):
    """
    y_i = x_i
    """

    # The many type-ignores in this class is because we replace a field in the super class with a
    # property, which mypy doesn't like.

    def __init__(self, input_dim: Optional[int] = None) -> None:
        Linear.__init__(self)
        self.input_dim = input_dim

    @inherit_check_shapes
    def __call__(self, X: TensorType) -> tf.Tensor:
        return X

    @property
    def A(self) -> tf.Tensor:  # type: ignore[override]
        if self.input_dim is None:
            raise ValueError(
                "An input_dim needs to be specified when using the "
                "`Identity` mean function in combination with expectations."
            )
        return tf.eye(self.input_dim, dtype=default_float())

    @property
    def b(self) -> tf.Tensor:  # type: ignore[override]
        if self.input_dim is None:
            raise ValueError(
                "An input_dim needs to be specified when using the "
                "`Identity` mean function in combination with expectations."
            )

        return tf.zeros(self.input_dim, dtype=default_float())

    @A.setter  # type: ignore[attr-defined, no-redef]
    def A(self, A: tf.Tensor) -> None:
        pass

    @b.setter  # type: ignore[attr-defined, no-redef]
    def b(self, b: tf.Tensor) -> None:
        pass


class Constant(MeanFunction):
    @check_shapes(
        "c: [broadcast Q]",
    )
    def __init__(self, c: TensorType = None) -> None:
        super().__init__()
        c = np.zeros(1) if c is None else c
        self.c = Parameter(c)

    @inherit_check_shapes
    def __call__(self, X: TensorType) -> tf.Tensor:
        tile_shape = tf.concat(
            [tf.shape(X)[:-1], [1]],
            axis=0,
        )
        reshape_shape = tf.concat(
            [tf.ones(shape=(tf.rank(X) - 1), dtype=default_int()), [-1]],
            axis=0,
        )
        return tf.tile(tf.reshape(self.c, reshape_shape), tile_shape)


class Zero(Constant):
    def __init__(self, output_dim: int = 1) -> None:
        Constant.__init__(self)
        self.output_dim = output_dim
        del self.c

    @inherit_check_shapes
    def __call__(self, X: TensorType) -> tf.Tensor:
        output_shape = tf.concat([tf.shape(X)[:-1], [self.output_dim]], axis=0)
        return tf.zeros(output_shape, dtype=X.dtype)


class SwitchedMeanFunction(MeanFunction):
    """
    This class enables to use different (independent) mean_functions respective
    to the data 'label'.
    We assume the 'label' is stored in the extra column of X.
    """

    def __init__(self, meanfunction_list: Collection[MeanFunction]) -> None:
        super().__init__()
        for m in meanfunction_list:
            assert isinstance(m, MeanFunction)
        self.meanfunctions = meanfunction_list

    @inherit_check_shapes
    def __call__(self, X: TensorType) -> tf.Tensor:
        ind = tf.gather(tf.transpose(X), tf.shape(X)[1] - 1)  # ind = X[:,-1]
        ind = tf.cast(ind, tf.int32)
        X = tf.transpose(
            tf.gather(tf.transpose(X), tf.range(0, tf.shape(X)[1] - 1))
        )  # X = X[:,:-1]

        # split up X into chunks corresponding to the relevant likelihoods
        x_list = tf.dynamic_partition(X, ind, len(self.meanfunctions))
        # apply the likelihood-function to each section of the data
        results = [m(x) for x, m in zip(x_list, self.meanfunctions)]
        # stitch the results back together
        partitions = tf.dynamic_partition(tf.range(0, tf.size(ind)), ind, len(self.meanfunctions))
        return tf.dynamic_stitch(partitions, results)


class Additive(MeanFunction):
    def __init__(self, first_part: MeanFunction, second_part: MeanFunction) -> None:
        MeanFunction.__init__(self)
        self.add_1 = first_part
        self.add_2 = second_part

    @inherit_check_shapes
    def __call__(self, X: TensorType) -> tf.Tensor:
        return tf.add(self.add_1(X), self.add_2(X))


class Product(MeanFunction):
    def __init__(self, first_part: MeanFunction, second_part: MeanFunction):
        MeanFunction.__init__(self)

        self.prod_1 = first_part
        self.prod_2 = second_part

    @inherit_check_shapes
    def __call__(self, X: TensorType) -> tf.Tensor:
        return tf.multiply(self.prod_1(X), self.prod_2(X))

Software Heritage — Copyright (C) 2015–2025, The Software Heritage developers. License: GNU AGPLv3+.
The source code of Software Heritage itself is available on our development forge.
The source code files archived by Software Heritage are available under their own copyright and licenses.
Terms of use: Archive access, API— Contact— JavaScript license information— Web API

back to top