
Synthetic Data via Differential Privacy

ABSTRACT
Synthetic Data Generation is a popular approach to data
release when the privacy of individuals in the database is
a concern. This approach, used by the US Census Bureau,
Department of Education, among others, gives the analyst
the illusion of dealing with real data. Ideally, a synthetic
data generation technique should guarantee the privacy of
individuals in the database, and yet output a synthetic data
set that is “representative” of the true data.

We study the problem of synthesizing data sets with the
guarantee of differential privacy for the source data. Specif-
ically, we present three differentially private algorithms for
data synthesis in domains that admit hierarchical decompo-
sitions (eg: spatial data, but including other domains such
as text strings). Our main technical tool (and contribution)
is the private adaptive histogram, which uses non-uniform
granularity to accurately resolve dense subpopulations with-
out overfitting sparse sub-populations.

The problem of private data synthesis has been previously
studied in [12], who conclude that differential privacy was
too strong a guarantee to provide for accurate results. We
do not find this to be the case. We evaluate our approaches
on two data sets: the census commute data set used in [12],
and a set of query logs released from Microsoft’s Live search
engine. Our experiments indicate that for large data sets,
differential privacy is not at all incompatible with very ac-
curate synthetic data.

1. INTRODUCTION
Consider a data provider such as the census bureau, that
has a database, each record of which contains sensitive in-
formation about an individual. The data-provider might
want to make this data available to analysts for discovering
large scale patterns. However, privacy concerns require that
the data be “sanitized” before release, to prevent leakage of
sensitive information.

We study the problem of synthesizing representative data
sets from a sensitive source data set, without compromis-
ing the privacy of the underlying records. This problem is
central to privacy-preserving data publishing, where a data
provider intends to publish representative information about
their data so that third parties can use the data offline,
commonly for exploratory data analysis, without constant
interrogation of the data provider.

Our goal is to provide a general data synthesis framework,
capable of targeting a broad spectrum of domains. The ap-
proaches we present in this work are aimed at data sets
whose domains admit a hierarchical decomposition, those
domains with meaningful taxonomies that recursively subdi-
vide populations into smaller, but coherent subpopulations.
A natural example are points in a d-dimensional Euclidean
space: this set can be recursively partitioned into 2d subsets,
splitting each set along its midpoints in each dimension, re-
cursively, as deeply as is needed. Note that we want the
taxonomy to be fixed, independent of the data, though we
will use the data to determine how far down each branch of
the taxonomy we will travel.

An additional data type we consider is free text – web search
queries in our case – where the taxonomy is simply defined
by the letters of the alphabet (plus numbers and spaces, in
our case). The domain of arbitrary text strings is refined to
“those that begin with ‘a’”, “those that begin with ‘b’”, etc.,
with similar refinements at subsequent levels based on the
character at the associated position. Clearly some domains
do not admit natural or meaningful hierarchical decomposi-
tions, and we restrict our attention here to those that do.

Much recent research has been made into the formal def-
inition of privacy, and numerous definitions have resulted.
Rather than survey them, we recount the findings of [12],
who conclude that, with the exception of variants of differ-
ential privacy, none of the privacy definitions fit the setting
of synthetic data well. Our experience is that there are in-
formal analogies to be made – the k in k-anonymity with
1/ε from ε-differential privacy – but that differential privacy
remains the most robust of the privacy frameworks, pro-
viding formal guarantees without imposing assumptions on
prior knowledge or output structure. We will use differential
privacy rather than introduce new definitions.
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1.1 Related Work
Most of the prior research on data publishing has focused
not on synthetic data, but rather on masking specific infor-
mation in the actual records to attempt to limit the potential
for re-identification. Solution concepts like k-anonymity [17],
l-diversity [13], m-invariance [19], and t-closeness [11], among
others [18, 5, 14] describe criteria for data release that aim
to protect the source data. However, the sequence of results
in this area demonstrate mainly that none of the techniques
are yet sufficient; in fact Ganta et al. [8] describe and eval-
uate practical attacks on many such techniques. Other ap-
proaches such as [7, 16] present alternate criteria for masking
data, with guarantees very much in line with differential pri-
vacy, but introduce an amount of noise into the data that
grows with the size of the data.

Nevertheless, techniques with end-to-end privacy guarantees
that introduce only fixed amounts of noise are possible in
principle. Dwork et al. observe in [6] that the release of sub-
population counts perturbed by Laplace noise (a symmetric
exponential distribution) provides differential privacy guar-
antees, independent of the number of subpopulations. This
approach was considered by [12] for estimating densities in a
census commute setting (records are pairs of source and des-
tination census blocks), but ultimately rejected due to the
severe sparsity of the data (most census source-destination
pairs have zero representatives). With such sparse data sets,
the noise introduced would overwhelm the signal, and the
resulting data would likely be of little use. Instead, [12] use a
multinomial sampling approach with a weakened definition
of differential privacy, and coarsen their domain using ex-
ternal knowledge to enforce minimal subpopulation counts.
Our approach will provide accuracy and differential privacy,
without requiring auxiliary information or assumptions on
the input (other than its structure).

Most prior work on differential privacy has used an interac-
tive framework, in which specific questions of the data are
posed and answered. In the context of differential privacy,
data release is strictly less useful than interactive compu-
tation; [6] prove a separation between the accuracies that
can be achieved for general queries in interactive and non-
interactive settings. If an analyst has a specific question in
mind, it is usually best to pose it in an interactive fashion.
However, synthetic data is aimed largely at supporting ex-
ploratory data analysis, where the analyst does not yet have
a fixed set of questions in mind. Moreover, synthetic data
is better suited to answering a large numbers of questions
with limited accuracy than an interactive interface, whose
guarantees (certainly with differential privacy) tend to decay
linearly with the number of questions.

Perhaps the most proximate work, theoretically, is the con-
tingency table release of [2]. This work gives techniques, in-
directly, for synthesizing data sets that respect certain mea-
sured properties of the source data (low order marginals be-
tween numerous boolean attributes). This approach uses an
interactive mechanism to measure the properties privately,
and then synthesize new data from these measurements, in-
dependent of the source data. This is an example of para-
metric synthetic data, where parameters of a model are esti-
mated and used to synthesize fresh data. While very suitable
if the relevant properties have been identified, such models

usually reveal little in their outputs other than the values of
the measured properties. In contrast, our approach is largely
non-parametric, in that it attempts to reflect the data dis-
tribution directly, without modeling assumptions. Our hope
is that it can then lead to interesting and unexpected con-
clusions about the source data.

Blum et al. [3] also consider differentially private data re-
lease, describing a [computationally inefficient] algorithm for
synthetic data release that gives differential privacy and ap-
proximately preserves the accuracy of all concepts from a
concept class of low VC dimension. They also give efficient
algorithms in a few restricted cases, and an efficient algo-
rithm for releasing sufficient information to answer halfspace
queries, but in the form of aggregate statistics, rather than
synthetic data.

1.2 Contributions
We present three algorithms for synthesizing data sets over
domains that admit hierarchical decompositions. Our main
techniques involve adaptive resolution of the domain, re-
solving and re-measuring regions that have substantial sub-
populations and coarsening sparse regions. This allows our
measurements to accurately track dense subpopulations, with-
out overfitting sparse subpopulations (which would necessar-
ily sacrifice one of privacy and accuracy). Our first scheme
is a folklore straw-man, and is substantially improved in two
different directions in the second and third schemes.

Our approaches differ from previous work in that they are
explicitly designed for differential privacy, as opposed to
[12] and [4] who analyze unadapted techniques (multinomial
sampling from a Dirichlet prior, and random subsampling,
respectively). Unlike these works, our privacy guarantees
will not be a consequence of the randomness inherent in re-
sampling, but rather enforced by algorithmic randomness in
the measurement process. By side-stepping the resampling
process and its inherent variance, we can substantially im-
prove the accuracy over any resampling approach, including
even those with no privacy guarantees. We provide theoret-
ical arguments comparing the variances of our approaches,
as well as empirical comparisons with other approaches.

Additionally, in our approaches the degree of privacy is a
parameter to the algorithm; it can be set anywhere along
a continuum from “entirely private” to “wholly disclosive”,
resulting in data sets ranging, respectively, from uniformly
random data to the source data itself. This is unlike the
previous work of [12] and [4], whose privacy guarantees are
derived from constraints on the inputs (eg: that subpopu-
lation counts must be at least a certain value) and are not
easily configured by the data synthesizer, especially if the
constraints do not actually hold.

1.3 Overview of Techniques
The standard histogram measurement described in [6] ob-
serves that if a domain is a priori decomposed into disjoint
subdomains, subpopulation counts can be released privately
by adding Laplace noise to each. Machanavajjhala et al. [12]
find that the sparsity of their data with respect to the size
of their domain makes these techniques ineffective. Specif-
ically, with incredibly sparse data (roughly 108 census re-
spondents for over 6.4× 1013 possible values), the contribu-
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tion of actual data is dwarfed by the contribution of the noise
added for privacy. Machanavajjhala et al. propose coarsen-
ing subdomains to ensure minimal cell counts, but rely on
auxiliary information to provide the appropriate levels for
them.

We approach the problem differently, conceptually starting
from a single population and refining subpopulations whose
(noisy) counts surpass some threshold (depending on the
input privacy parameter). This ensures that the only sub-
populations we measure are those with sufficient support as
to make their measurement statistically significant. At the
same time, it has the flexibility to resolve very populous sub-
domains and provide higher resolution information therein.
This process uses only noisy measurement of counts, and
provides differential privacy guarantees proportional to the
depth of the recursion.

We can improve on this first cut, by observing that the deci-
sion of whether or not to further partition a region leaks less
information than the noisy count itself, especially when this
count is large. Implementing this intuition requires careful
modifications to the algorithm and a more involved privacy
analysis. We end up with a similar algorithm, but one whose
privacy cost is independent of the depth of recursion.

We also present an approach for direct data synthesis fol-
lowing the same spirit as the first approach, but rather than
have the noisy counts determine whether to refine or not,
we have them commit to a subpopulation count, which the
subsequent recursive steps must allocate. This has the ap-
pealing property that macroscopic properties are preserved
with a great deal of accuracy; the total number of synthe-
sized data points are within additive constant error of the
true value, and the same statement roughly holds for all sub-
populations. For sizeable subpopulations, this approach can
be substantially more accurate even than resampling from
the distribution producing the true data, whose variance is
linear in the subpopulation size, rather than constant.

Our experiments indicate that our techniques are somewhat
incomparable. Although both the second and third ap-
proach improve on the first, straw-man approach, they do
so in different ways. The improved adaptive histogram ap-
proach does well at identifying structure to a high level of
accuracy, producing good maps, and lists of search queries.
The direct synthesis approach, on the other hand, has a
much easier time of producing data sets that respect large
scale statistics without introducing noticeable bias.

1.4 Paper Outline
We start in Section 2 with an introduction to notation, the
definition of differential privacy, and the development of a
basic adaptive histogram scheme. In Section 3 we improve
on this scheme, presenting a slight modification and detailed
privacy analysis. In Section 4 we present a related approach
that bypasses the histogram step, and synthesizes data di-
rectly. We measure and evaluate the performance of these
three approaches in Section 5 on two different data sets. Fi-
nally, we conclude in Section 6 with closing remarks and
future directions for research. Appendix A contains an ex-
tended discussion of alternate implementations of one of our
approaches, and Appendix B contains several anecdotal ex-

amples of data we are able to synthesize, both for census
commuters as well as actual web searches. Several code ex-
amples follow the appendices.

2. TECHNICAL PRELIMINARIES
We start by introducing some notation. Rather than think of
the domain D as partitioned a priori into a large number of
small parts, we imagine a hierarchy of partitions, so that D
is first split into a few parts not much smaller than D. These
parts are then further partitioned into a few slightly smaller
parts, and so on. Rather than think of records as elements
of D, we will imagine them as sequences of a different type
K that defines which subpopulation they fall in each of the
refinement steps.

As a concrete simple example, suppose each record describes
a point on the unit interval [0, 1]. We can describe each point
by its binary representation, which is a sequence of 0s and
1s. This corresponds to recursively decomposing the inter-
val into two subintervals of half the length, and the binary
representation simply indicates the sequence of subintervals
the point lies in. We will often consider spatial data sets of
geometric points from the d-dimensional square: [0, 1]d. We
can now transform each point into a sequence of characters
from the set {0, 1}d, each bit indicating the next bit in the
fractional component of the corresponding coordinate. Ge-
ometrically, we have decomposed the d-dimensional square
into 2d sub squares, each of half the radius, and the sequence
of bit patterns indicates the sequence of subsquares the data
point lies in. Text strings are another example, where we
simply take K to be the alpha-numeric characters and use
the characters at each position to drive the refinement.

2.1 Differential Privacy
Differential privacy is a property of randomized computa-
tions that ensures that a single change to the input of the
computation results in a limited relative change to the prob-
ability of any output or sets of outputs.

Definition 1. We say a randomized computation M pro-
vides ε-differential privacy if for all data sets A and B and
all S ⊆ Range(M),

Pr[M(A) ∈ S] ≤ exp(ε|A∆B|)×Pr[M(B) ∈ S] , (1)

where A∆B denotes the symmetric difference of A and B.

Intuitively, the presence or absence of any single record is not
substantially reflected in the output distribution. This as-
sures participants whose records constitute the dataset that
the presence or absence of their data from the data set will
not result in noticeably different behavior of those who ob-
serve the result of the computation.

The easiest example of a differentially private computation,
and one we will use extensively, is the “noisy count”, in
which the correct count of the number of records in a data
set is perturbed by a Laplace random variable with param-
eter 1/ε. The Laplace distribution is a symmetric exponen-
tial distribution with density ε exp(−ε|x|)/2, and provides
ε-differential privacy despite its exponential tails in both di-
rections giving substantial [though imperfect] accuracy. For
completeness, we reproduce the proof from [6].
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Let A and B be two datasets with symmetric distance 1.
Thus the counts c(A) and c(B) differ by at most 1. The
probability density at x for input A is

ε exp(−ε|x− c(A)|)/2
≤ ε exp(−ε(|x− c(B)| − |c(A)− c(B)|)/2
≤ exp(ε) · ε exp(−ε|x− c(B)|)/2,

where we have used the triangle inequality in the first step.

2.2 Static Histograms
Dwork et al [6] observed that for any partitioning of the
input domain into any number of parts, releasing the sub-
population counts with Laplace (a symmetric exponential
distribution) noise of parameter 1/ε added to each gives ε-
differential privacy. This was a substantial improvement on
previous analyses, which suggest that the number of parts
of the partition would need to appear in the noise term, or
the denominator of the privacy guarantee, if the measure-
ments were to be taken independently. This is not so, [6]
argues, because a single participant cannot arbitrarily influ-
ence each count; any individual participates in at most one
count.

Remark: The previous work of [12] can be viewed as anal-
ogous to static histograms. In that work, the data (source-
destination pairs) are pre-partitioned by destination, which
they treat as a public attribute, and for each a histogram
over sources is produced. Their main concern is the sparsity
of the data: there are roughly eight million census blocks
and only tens to hundreds of commuters arriving at each.
Consequently, simple noisy measurement would make eight
million noisy measurements for each destination block, and
as a result introduce a tremendous number of spurious and
unrepresentative records.

2.3 Adaptive Histograms
It is possible to [carefully] extend the analysis from [6] from
counts of disjoint populations, to general differentially pri-
vate computation on disjoint subpopulations. Doing so re-
quires the alternate definition we use (based on symmet-
ric difference) rather than indistinguishability [6] (based on
hamming distance).

Theorem 1. Let {Di} be disjoint subsets of D, and let M
provide ε-differential privacy. Partitioning an input set X
by the Di and executing M on each, ie the set: {M(X∩Di)},
provides ε-differential privacy.

Proof. As in [6], using the definition of differential pri-
vacy instead of that of the Laplace distribution.

This generalization lets us design a very simple adaptive
histogram approach: if a data set has size at least a given
threshold (measured via a differentially private noisy count),
we subdivide the set and recursively apply the algorithm on
each of the subparts. Figure 1 gives the pseudocode for the
algorithm. We will run the algorithm for at most B levels
of the recursion, for a suitable parameter B.

Algorithm Basic(L, thresh)
If (L.Noisycount(ε) ≥ thresh ) then

Partition L into parts L1, . . . ,Lk.
For i = 1, . . . , k, set Hi = Basic(Li,thresh).
return the composition of the Hi’s.

Else return (L,L.Noisycount(ε)).

Figure 1: Basic Adaptive Histogram

Corollary 2. The basic adaptive histogram algorithm
from Figure 1, run to depth at most B, provides (εB)-differential
privacy.

Proof. : The recursive call at depth i provides differ-
ential privacy equal to that of the noisy count, ε, plus the
differential privacy of the executions at depth i + 1. Since
we stop at depth B, the claim follows by induction.

This adaptive approach lets us drill down into dense sub-
populations, while keeping a coarse approximation to sparse
subpopulations. The set of prefixes that result provide an in-
teresting view of the data themselves, but we will use them
simply to re-measure the data. The set of prefixes struc-
turally partition the input domain, and we run a second
[static] histogram query using this partition to measure the
counts. For each part, we synthesize a number of represen-
tatives equal to this count.

Remark: We run this second pass, rather than use the fi-
nal, terminal counts, for two reasons: Firstly, we may want
to use higher accuracy in the final measurement than in each
step of the recursive descent, and secondly the final counts,
by nature of being final, are negatively biased; recounting
gives us unbiased estimators for the counts. The privacy
cost of the data synthesis increases from that of adaptive
histogramming by the reciprocal of the accuracy of this sec-
ond pass.

3. IMPROVED ADAPTIVE HISTOGRAMS
Our improved adaptive histogram is nearly identical to the
naive algorithm, with two important changes. We will no
longer check the depth of the computation, but we continue
the recursive computation on a strict subset of the input
data set, discarding a small set of records from each recursive
call to ensure that the counts strictly decrease by a sufficient
margin.

The resulting algorithm appears in Figure 2. Note that this
is identical to the naive computation, except for the invoca-
tion of Skip(discount), removing discount records before
each recursive call. This apparently minor change, and a
more thorough analysis of differential privacy, lead to pri-
vacy bounds independent of the depth of the recursion. We
note that the Skip subroutine is underspecified; in this sec-
tion, we just assume it removes the first discount records
from the data set. We defer a discussion on more intelli-
gent choices of records to remove, and their implications, to
Appendix A.
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Algorithm Improved(L, thresh)
If (L.Noisycount(ε) ≥ thresh ) then

L.Skip(discount).
Partition L into parts L1, . . . ,Lk.
For i = 1, . . . , k, set Hi = Improved(Li,thresh).
return the composition of the Hi’s.

Else return (L,L.Noisycount(ε)).

Figure 2: Improved Adaptive Histogram

Theorem 3. : The adaptive histogram approach from Fig-
ure 2, when executed with discount = t ≥ b + ln 2/ε, pro-
vides (2ε)-differential privacy, where b = threshold is the
termination threshold.

Proof. The probability associated with any possible se-
quence of outputs is the product of the probabilities of con-
tinuation at each internal node in the computation tree and
the product of termination probabilities at each leaf. Let
p(x) be the probability of continuation given a true count of
x. The addition of Laplace noise implies that

p(x) =


1− exp(−ε|x− b|)/2 if x ≥ b

exp(−ε|x− b|)/2 if x < b
(2)

This observation allows us to work only with the true counts,
instead of the noisy counts. If A and B differ on a single
record, the true counts can only differ along a single path
down the computation tree. In a simple world, this would
simply be along the path containing their difference, whose
counts differ by one. In fact, the record in difference could be
one that is skipped, causing no further change in the counts
along its path, but resuscitating a different record that in-
creases the counts along its path. It in turn may then be
skipped, and so on, causing a chain reaction that, fortu-
nately, follows a simple path and never grows beyond one
record in difference. The counts in this path may become
zero, and thus equal, but we continue the path to the leaf of
the tree nonetheless, observing that these probabilities will
eventually cancel.

As the counts along the computation tree are equal every-
where except a path P , the ratio of continuation and ter-
mination probabilities will nicely cancel everywhere except
along that path. Letting ai and bi be the counts of A and
B, respectively, at the ith node on this path from the leaf,

Pr[M(A) contains P ]

Pr[M(B) contains P ]
=

Y
i>0

p(ai)

p(bi)
× 1− p(a0)

1− p(b0)
. (3)

If an element is removed from B yielding A, each term p(ai)
p(bi)

is at most one and the final term is at most exp(ε). If an
element is added to B yielding A, the final term is at most
one, but the terms in the product can each be greater than
one and must be bounded.

Our plan is to take logarithms, changing the product of
probabilities to a summation of its logarithms. To start out,
we observe that the ratio of p(x + 1)/p(x) is greatest when

x is smallest, and decreases monotonically as x grows, and
that log is a monotone function. We can thus upper bound
the logarithm of the ratio by the average over the preceding
interval of size t,

log

„
p(ai)

p(bi)

«
≤ 1

t

biX
x=bi−t+1

log

„
p(x+ 1)

p(x+ 0)

«
. (4)

The decrease of true counts by at least t ensures that these
sums are disjoint. Since x ≥ 0 for every node where the
counts differ, we can boundX

i>0

log

„
p(ai)

p(bi)

«
≤ 1

t

∞X
x=−t

log

„
p(x+ 1)

p(x+ 0)

«
. (5)

This summation, using the observation that the logarithm
of ratios is just a difference of logarithms, telescopes, giving

1

t

∞X
x=−t

(log p(x+ 1)− log p(x+ 0)) ≤ 1

t
log

„
1

p(−t)

«
.(6)

Rewriting this bound in the product formulation, we getY
i>0

p(ai)

p(bi)
≤ exp(ε(t+ b)/t)× 21/t . (7)

Recalling that t = b+ ln 2/ε, and simplifying, we can bound
the right hand side by exp(2ε).

Remark: In general, we should take b to be at least the
natural log of the branching factor – the number of sub-
populations of any given population – divided by epsilon.
Otherwise the computation has non-zero probability of di-
verging, producing an infinite histogram (note: privacy is
guaranteed either way).

In appendix A, we discuss alternative discounting functions
that can replace the Skip operation above, that may be more
suited to preserve different structural properties of the data,
while continuing to guarantee privacy.

4. DIRECT DATA SYNTHESIS
Our approach to direct data synthesis uses the same princi-
ples as the basic adaptive histogram approaches. However,
rather than recursively subdivide and recount each subpopu-
lation, our data synthesis commits each population to a fixed
count, and then subdivides this count among its subpopu-
lations. This approach ensures that macroscopic properties
stay accurate, independent of the ultimate resolution of the
data. Unlike parametric “model and resample” approaches,
with count variances linear in the counts, we will see that our
variances depends only on the accuracy with which we take
our noisy counts. Although this can be larger for some pop-
ulations (notably “structural zeros”, where data is known
not to exist), for many populations of interest it is not.

Algorithmically, our approach takes as input a parameter
maxdepth, and a number of records to synthesize, perhaps
determined using a noisy count over the whole population.
It then allocates exactly this number of slots to its subpop-
ulations, privately, using noisy subpopulation counts. Each
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Algorithm Synthesize(L, count, prefix, maxdepth)
If (count == 0) return
If (count == 1) output prefix
If (maxdepth == 0) output count copies of prefix
Partition L according to key to get L1, . . . , Lk

subcounti ← Noisycount(Li)
Invoke Center(count, subcounts).
For i = 1, . . . , k,

Synthesize(Li,subcounti,prefix+‘i’,maxdepth-1)

Figure 3: Direct Data Synthesis

subpopulation recursively allocates their allocations, and so
on. The recursion continues as long as the count to allocate
is greater than one, or if the depth exceeds maxdepth, and
terminates otherwise. The allocation of the slots defines a
data set, with one record produced from each slot. Figure 3
demonstrates the process.

There are many ways to allocate counts based on noisy sub-
population counts, and care needs to be taken with issues
such as bias and round-off. In Figure 4 we choose the prim-
itive but effective approach of rotating through each of the
subpopulations, moving the associated subpopulation count
one unit in the correct direction, if possible, until their sum
equals the intended count. This approach has the appeal-
ing property that the subpopulation error, the difference
between each subpopulation count and the value it is allo-
cated (and consequently the count observed in the output),
is only the error in measurement, plus an even share of the
error introduced between the allocated count and noisy sub-
count measurements. Consequently, the error from previous
recursive levels typically dissipates, and each subpopulation
enjoys the same level of accuracy.

More precisely, suppose that each noisy count is computed
by adding Laplace noise with standard deviation R. Then
the count at each node gets an expected error of about R,
plus the error inherited from the parent during the centering
procedure. A simple calculation shows that for a node at
depth d, the expected error in the count is no larger that
dR. This bound is close to tight in the worst case (when
the data is all zeroes except for one node at depth d) and
we cannot hope to prove a better bound without making
additional assumptions on the data. However, in most data
sets the expected error from the parent would be distributed
equally across several children, and hence the actual error in
count at a node at depth d is O(R) independent of the nodes
depth. Indeed our experiments indicate that this technique
is comparable to the adaptive histogram technique on real
data sets. Finally, note that R itself must be maxdepth/ε to
get ε-differential privacy.

4.1 Connections to k-Anonymity
Our data synthesis approach continues to allocate counts
until a single record remains, but realistically we lose signal
once the count drops below 1/ε. If we were inclined, we could
simply publish the prefix at this point as well as the final
noisy count for the population (perhaps taken with higher

Algorithm Center(count, subcounts)
For i = 1, . . . , k, set subcounti ← max(0,subcounti).
direction ← sgn(count −

P
i subcounti)

Repeat in roundrobin order
subcounti ← max(0,subcounti+direction)

until (count ==
P

i subcounti)

Figure 4: Count Centering for Direct Data Synthesis

accuracy, as one would do in a histogram). At this point, the
approach begins to resemble the kin of k-anonymity, which
group the records of the data set so that each group con-
tains at least k records (or various other, more demanding
properties, to strengthen the protection).

One important difference is that k-anonymization approaches
are free to choose from many generalizations of a set of
records; they are not required to pick a prefix of the de-
scription of the record, and indeed the records usually come
from a multi-attribute lattice, rather than a single fixed hi-
erarchy. Each step of refinement is responsible not only for
determining which records go where, but further which at-
tribute is used to make the decision. Another important
difference is that k-anonymity does not provide formal end-
to-end privacy guarantees.

Fortunately, we can accommodate this added functional-
ity in the differential privacy setting using the exponential
mechanism of [15]. The exponential mechanisms provides
a differentially private mechanism for choosing among sev-
eral discrete outcomes (here, which attribute to refine next)
based on a score function that must satisfy certain stabil-
ity properties (that a single record not change the score by
more than one). One natural choice is to use “imbalance”
of an attribute as the score function, hoping to pick those
attributes that partition the data as little as possible:

Imb(attribute A,D) = max
ai∈A

|x ∈ D : A(x) = ai| (8)

This score function leads to a distribution that selects at-
tributeA with probability proportional to exp(ε×Imb(A,D)).
This approach is purely heuristic; many other algorithms
give formal approximation guarantees with respect to opti-
mal k-anonymization which we do not claim. Nonetheless,
it is an approach to k-anonymization that provides the guar-
antees of differential privacy.

5. EXPERIMENTAL VALIDATION
We now consider two real data sets drawn from different do-
main: a data set of commute patterns derived from the Lon-
gitudinal Employer-Household Dynamics Survey, and a data
set of search queries issued to Microsoft’s Live Search. For
each of the data sets, we will consider our three approaches:
basic adaptive histograms, improved histograms, and direct
synthesis, with three settings of differential privacy: 10.0,
1.0, and 0.1. Because of the difference in domains, spatial
and non, we will use different metrics and benchmarks in
the two settings, described in more detail in their respective
subsections.
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5.1 Census Commute Data
While the Longitudinal Employer-Household Dynamics data
set (LEHD) contains a substantial amount of data, we are
specifically interested in the commute records, which have
for each respondent the census blocks of employment and
residence. This is the data set considered by [12], and syn-
thetic data based on this data set is currently in deployment.
In fact, the only data we have access to are themselves syn-
thetic, but like [12], we will treat them as ground truth. The
census bureau actually releases three different synthetic data
sets; we use one of them as the ground truth, and the others
as benchmarks for accuracy.

We start by transforming pairs of census blocks to two pairs
of latitude-longitude coordinates based on the centroids of
the census blocks. We then normalize these to the unit four
dimensional cube. The decomposition we use will be the four
dimensional analogue of a quadtree, decomposing such cubes
into sixteen sub-cubes of half the radius. As mentioned,
we compare three different techniques, with three different
privacy settings, but we have additional data in the form of
parallel census releases.

We assess our synthetic data using several different metrics.
We first consider in Figure 5 an approximation to the earth-
mover distance between two data sets, provided by Indyk [9],
using the sum across all subpopulations, at all scales, of the
diameter of the subpopulation times the symmetric differ-
ence of the two sets on it.

0 5 10 15 20
0

1⋅105

2⋅105

Figure 5: Measurement of the earthmover approx-
imation. The y axis measures the aggregate error,
up to histogram depths indicated by the x axis. The
lines plotted are: in blue, three direct synthesis ap-
proaches, with privacy values 0.1, 1.0, and 10.0, in
red two alternate census releases, and in black the
expected distance for a random resampling of the
source data (with cell variance proportional to its
count).

We take several conclusions from these measurements. First,
the direct data synthesis (blue lines) can outperform even
the alternate census releases, drawn from the same distribu-
tion as the source data. Second, the alternate census releases
(red lines) do not appear to track the anticipated variance
for the cell counts (black line), suggesting that they may
use a more intelligent hierarchical decomposition, which we
could also take advantage of with more investment in domain
knowledge. Finally, as privacy increases, accuracy decreases,

and we see smooth transitions suggesting that configuring
the techniques to meet specified privacy or accuracy goals
should not be difficult.

We also consider in Figures 6 and 7, as done in [12], the
distributions of commute distances from several source lo-
cations. For figure 6 we use Honolulu, HI, and San Fran-
cisco, CA as the sources. We note that despite drawing
four lines for each (three privacy settings, and the correct
distribution), all four effectively occlude each other.

1⋅10-6 1⋅10-5 1⋅10-4 0.001 0.01 0.1 1

0.25

0.5

0.75

1

Figure 6: Cumulative density functions for com-
mute distances for Honolulu, HI and San Francisco,
CA. The true distribution is in black, with synthetic
data from improved adaptive histograms with pri-
vacy settings 10.0, 1.0, and 0.1 in blue.

For a less appealing example, Figure 7 considers Billings,
MO. Here we can clearly see a disconnect between the true
distribution (in black) and the synthesized distributions (in
blue). None are especially appealing, possibly a consequence
of Montana being insufficiently resolved to accurately isolate
Billings’ distribution from Montana’s generally.

Finally, in Table 1 in the appendix we present purely anec-
dotal visual evidence, plotting the distribution of commute
destinations for fixed origins and comparing with ground
truth. The points in these pictures have been moved to the
centroid of the nearest actual census block for aesthetic rea-
sons. This is strictly a post-processing operation that does
not use the protected commute data.

5.2 Search Engine Queries
Microsoft has released a set of search queries (among other
data) to external researchers as part of its “Beyond Search”
request for proposals. We transform the text of each search
into a sequence over the the 26 possible letters, 10 possible
numerals, a period, and a blank space. Strings contain-
ing other characters are discarded, leaving us with approx-
imately 2/3 of the original data, approximately 90 million
queries.

Rather than measure the earthmover distance, which fits
text badly (errors in the final few characters are as distract-
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Figure 7: Cumulative density functions for commute
distances for Billings, Montana. The true distribu-
tion is in black, with synthetic data from improved
histograms with privacy settings 10.0, 1.0, and 0.1 in
blue.

ing as in the first few characters), we will assess the fraction
of the corpus that we can recover privately. That is, we will
synthesize a set of words, and measure the number of actual
queries that can be found in the synthetic data set, count-
ing multiplicities. Ideally, we should be able to reconstruct
a large fraction of those strings that appear with sufficient
frequency, while missing the bulk of the strings that appear
infrequently (as necessitated by differential privacy).

0 2.5 5 7.5 10 12.5 15 17.5 20

0.25

0.5

0.75

1

Figure 8: The cumulative fraction of queries from
the source data that can be found in the synthetic
data set (on the y-axis), with the x-axis being the
log of the frequency of the terms. The lines are first
the data cdf itself (in black), then three bundles of
techniques (improved histograms, direct synthesis,
and naive histograms, in that order), for privacy
settings 10.0, 1.0, and 0.1.

Figure 8 and Figure 9 contain the relevant measurements.
In Figure 8 we plot the cumulative distribution of recov-
ered queries, accumulated by the frequency of the query.
The various curves have the most disparity early in this ag-
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Figure 9: The same data as Figure 8, with the order
of integration reversed: the x-axis is 20 minus the
log of the frequency.

gregation (disagreeing on low frequency queries) and so we
also plot the same data in Figure 9, reversing the order of
integration: from most frequent to least frequent. The sec-
ond figure demonstrates the high fidelity on frequent queries
more clearly.

The key observations from the figures are that, as expected,
all techniques have relatively high fidelity on high frequency
terms. The point at which the three techniques break down
is determined more by the privacy setting (10.0, 1.0, and
0.1 each corresponding to a bundle of three lines in the fig-
ures) than by the technique. One minor, but interesting
detail can be seen in Figure 9, which is that the best of
the three techniques (improved histograms) is tight to the
ground truth for noticably longer than the other techniques.
This is a consequence of the fixed depth of recursion (20, in
our experiments) the other approaches have built in. As the
adaptive histograms can descend to arbitrary levels, they are
able to capture this additional fraction of long and frequent
queries.

6. CONCLUSIONS / FUTURE DIRECTIONS
We have presented three techniques for synthesizing syn-
thetic data sets with the guarantees of differential privacy.
The techniques use adaptive resolution histograms to track
the local density of the data sets, producing representative
samples at multiple scales. We evaluated these techniques
on two modern and complex data sets, demonstrating the
feasibility of accurate and private data release.

Our approaches are very simple, and have the potential to
be specialized in several directions. In many settings, valu-
able domain knowledge exists about, e.g., commute patterns
or the english language. Incorporating this information into
the synthesis routines, or in post process, can lead to sub-
stantially more realistic and accurate data sets.

It is also interesting to investigate whether our approach
can be unified with other more parametric approaches. For
example, the contingency release of [2] apply very well for
data sets of numerous boolean variables, whereas our ap-
proaches apply best to data sets of few, but complex at-
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tributes. Bringing these two approaches together in a com-
mon framework will be necessary for the richest of data sets.
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APPENDIX
A. GENERALIZED DISCOUNTING
The techniques we applied for improved adaptive histograms
can be generalized substantially, replacing the primitive Skip
operation with more saavy discounting of counts. To articu-
late the more general setting, it will be important to consider
the possibility of incompletely determined records: those
whose prefix does not carry them to a leaf in the taxonomy,
but deposits them instead at an internal node. We implic-
itly extend the domain D to include such partial records, if
it does not already contain them.

We call a function T : Dn → Dn a t-discount function if its
outputs ensure the property that for each population, each of
its subpopulation has at least t fewer records. Importantly,
we will also require the function to be stable, in the formal
sense that for any inputs A and B,

|T (A)∆T (B)| ≤ |A∆B| . (9)

The main theorem of Section 3 holds with Skip replaced by
any stable t-discount function.

There are several stable t-discount functions that may prove
interesting in shaping the output histograms to reflect dif-
ferent measurement goals. Examples include:

• Uniform Discounting: We can remove an equal num-
ber of records from each subpopulation. Cases when
the some subpopulations are empty (or too small), or
t is not divisible by the number of subpopulations, can
and should be handled carefully to ensure stability.
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• Proportional Discounting: Like Skip, we could sim-
ply truncate each record to the first subpopulation con-
taining it which does not yet have t representatives.
Randomly permuting the input before applying this
technique gives a form of proportional discounting, where
subpopulations are discounted in proportion to their
population.
• Progressive Discounting: We can remove the records

from the most populous subpopulation, so long as we
make sure to share the burden among other popula-
tions with large population. Repeatedly removing a
single record from the currently largest subpopulation
has this property. Note that the same approach with
the smallest subpopulation is not stable.
• Fractional Discounting: All of these techniques, and

the associated proofs, hold when records are not re-
moved so much as diminished by a fractional amount.
The aggregate weight of a subpopulation still must de-
crease by t, but we do not require integral weights.

Each of these discounting schemes results in qualitatively
different output histograms, focusing on different interesting
aspects of the data. The uniform/proportional/progressive
discounting schemes range from deep-but-narrow to broad-
but-shallow histograms.

Remark: Rather than explicitly transform the data, most
transformations are more efficiently implemented implicitly,
as discounts folded directly into the subpopulation’s noised
counts, without explicitly identifying the record to be re-
moved. This efficiently permits the substantial flexibility of
deferring the decision as to which sub-subpopulation counts
we wish to discount until we visit it.

B. SYNTHETIC DATA EXAMPLES
In this section we present a few examples of the synthesized
data, to get a feel for what it looks like and to what degree
the data feels authentic.

In Figure 10 we present a few of the synthetic queries pro-
duced using one of our approaches: the improved adaptive
histograms with epsilon set to 1.0. We present an arbitrary
subset of the queries, restricted to those that appear at least
500 times. This choice is mostly aesthetic; lower thresholds
produce lists that show less diversity (hundreds of queries
prefixed with ‘abc’ rather than ten or so) and higher thresh-
olds result in unsurprising results. The most interesting fea-
ture, from our point of view, is that the synthesized queries
are actual identifiable searches we might expect to see. This
trend holds across the synthetic data set.

Table 1 contains views of three synthetic data sets, using the
direct data synthesis approach with parameters 0.1, 1.0, and
10.0. We draw heatmaps for commute destinations originat-
ing in San Francisco, CA, but stress that the data was not
synthesized with this subpopulation in mind. The fidelity
clearly improves as the parameters increase, but always re-
mains more diffuse than the source data.

548 aa route finder

724 aa route planner

7291 aa.com

5256 aaa

742 aaa travel

2146 aaa.com

1362 aafes

538 aafes.com

1021 aapl

3853 aarp

595 abby winters

11557 abc

1105 abc dancing with the stars

1127 abc daytime

2623 abc distributing

666 abc family

832 abc good morning ameri

5474 abc news

1974 abc tv

548 abc tv shows

11632 abc.com

683 abc13

560 abc13.com

915 abc7

960 abc7.com

556 abcdistributing

682 abcdistributing.com

902 abcnews

2103 abcnews.com

2648 abercrombie

1482 abercrombie and fitch

741 abortion

1233 about.com

1404 abv.bg

519 ac ir shiraz

824 ac moore

1230 academy

1105 academy sports

1921 access hollywood

6737 access my aol mail

1225 accu weather

601 accurint

6485 accuweather

2240 accuweather.com

886 ace

2359 ace hardware

812 ace.com

1277 acer

551 acid reflux

567 acrobat

1193 acrobat reader

975 across the universe

621 acs

1390 act

668 active x

571 activesync

650 activex

1368 acura

740 ad aware

Figure 10: Some synthetic queries and counts using
Improved Adaptive Histograms with epsilon = 1.0.
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Direct Synthesis: epsilon = 0.1 Direct Synthesis: epsilon = 1.0

Direct Synthesis: epsilon = 10 Source Data

Table 1: Heatmaps of the destinations of synthetic workers originating within 5 miles of San Francisco.
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// Recursively partition input until at most threshold elements remain
public void Basic(PINQueryable<string> input, string prefix)
{

if (input.NosiyCount(epsilon) < threshold)
Console.WriteLine(prefix);

else foreach (var part in input.Partition(keys, x => x[0]))
Basic(part.Value.Select(x => x.Substring(1)), prefix + part.Key);

}

Figure 11: A basic adaptive histogram: The input data set is recursively partitioned as long as the size of
the sub-population is sufficiently large.

public void Histogram(PINQueryable<string> input, string prefix)
{

if (input.NoisyCount(epsilon) < threshold)
Console.WriteLine(prefix);

else foreach (var part in input.Skip(discount).Partition(keys, x => x[0])
Histogram(part.Value.Select(x => x.Substring(1)), prefix + part.Key);

}

Figure 12: An improved adaptive histogram: Before each recursive call a fixed number discount of records
are removed from the data set.

// allocates count between children, continuing until count is at most one.
public void Synthesize(PINQueryable<string> input, string prefix, int count)
{

if (count == 1) Console.WriteLine(prefix);
if (count <= 1) return;

var parts = input.Partition(keys, x => x.Substring(0,1));
var subcounts = keys.Select(key => new Pair<string,int>(key,parts[key].NoisyCount(epsilon)));

/* center subcounts so that 0 <= subcount[i] <= count and subcount.Sum() == count */

foreach (var key in keys)
Synthesize(parts[key].Select(x => x.Substring(1)), prefix + key, subcounts[key]);

}

Figure 13: Direct data synthesis skeleton. A count is allocated to a population, which then uses noisy
subcounts to allocate exactly that many records to its subpopulations.

/* code fragment used to center the subcounts. */

foreach (var key in keys)
subcounts[key] = Math.Min(count, Math.Max(0, subcounts[key]));

int subcount = keys.Select(key => subcount[key]).Sum();
int direction = (count > subcount) ? +1 : -1;

for (int i = System.Random(); count != subcount; i++)
{

if ((direction == +1 && subcounts[keys[i % keys.Length]] < count) ||
(direction == -1 && subcounts[keys[i % keys.Length]] > 0))

{
subcounts[keys[i % keys.Length]] += direction;
subcount += direction;

}
}

/* code fragment ends; subcounts are centered. */

Figure 14: Centering noisy subpopulation counts so that they provide the correct total.
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