Skip to main content
  • Home
  • Development
  • Documentation
  • Donate
  • Operational login
  • Browse the archive

swh logo
SoftwareHeritage
Software
Heritage
Archive
Features
  • Search

  • Downloads

  • Save code now

  • Add forge now

  • Help

  • c790f1e
  • /
  • eigenComputes.rd
Raw File Download
Permalinks

To reference or cite the objects present in the Software Heritage archive, permalinks based on SoftWare Hash IDentifiers (SWHIDs) must be used.
Select below a type of object currently browsed in order to display its associated SWHID and permalink.

  • content
  • directory
content badge Iframe embedding
swh:1:cnt:9e34754c32af07c7613b8e7959660e944d7c37d7
directory badge Iframe embedding
swh:1:dir:c790f1e33a5232044be137009743a5c8e7692d25
Citations

This interface enables to generate software citations, provided that the root directory of browsed objects contains a citation.cff or codemeta.json file.
Select below a type of object currently browsed in order to generate citations for them.

  • content
  • directory
Generate software citation in BibTex format (requires biblatex-software package)
Generating citation ...
Generate software citation in BibTex format (requires biblatex-software package)
Generating citation ...
eigenComputes.rd
\name{eigenComputes}
\alias{eigenComputes}
\title{ Computes Eigenvalues According to the Data Type }

\description{
 The \code{eigenComputes} function computes eigenvalues from the identified data
 type. The function is used internally in many
 fonctions of the \pkg{nFactors} package to be able to apply these to a vector of
 eigenvalues, a matrix of correlations or covariance or a data frame.
 }

\usage{
 eigenComputes(x, cor=TRUE, model="components", ...)
 }

\arguments{
  \item{x}{     numeric: a \code{vector} of eigenvalues, a \code{matrix} of
                correlations or of covariances or a \code{data.frame} of data}
  \item{cor}{   logical: if \code{TRUE} computes eigenvalues from a correlation
                matrix, else from a covariance matrix}
  \item{model}{ character: \code{"components"} or \code{"factors"} }
  \item{...}{   variable: additionnal parameters to give to the \code{cor} or
                \code{cov} functions}
 }

\value{
  \item{value}{ numeric: return a vector of eigenvalues }
 }


\author{ 
    Gilles Raiche \cr
    Centre sur les Applications des Modeles de Reponses aux Items (CAMRI) \cr
    Universite du Quebec a Montreal\cr
    \email{raiche.gilles@uqam.ca}, \url{http://www.er.uqam.ca/nobel/r17165/}
 }

\examples{
# .......................................................
# Different data types
# Vector of eigenvalues
  data(dFactors)
  x1 <- dFactors$Cliff1$eigenvalues
  eigenComputes(x1)
  
# Data from a data.frame
  x2 <- data.frame(matrix(20*rnorm(100), ncol=5))
  eigenComputes(x2, cor=TRUE,  use="everything")
  eigenComputes(x2, cor=FALSE, use="everything")
  eigenComputes(x2, cor=TRUE,  use="everything", method="spearman")
  eigenComputes(x2, cor=TRUE,  use="everything", method="kendall")

# From a covariance matrix
  x3 <- cov(x2)
  eigenComputes(x3, cor=TRUE,  use="everything")
  eigenComputes(x3, cor=FALSE, use="everything")

# From a correlation matrix
  x4 <- cor(x2)
  eigenComputes(x4, use="everything")
# .......................................................
 }

\keyword{ multivariate }

Software Heritage — Copyright (C) 2015–2025, The Software Heritage developers. License: GNU AGPLv3+.
The source code of Software Heritage itself is available on our development forge.
The source code files archived by Software Heritage are available under their own copyright and licenses.
Terms of use: Archive access, API— Contact— JavaScript license information— Web API

back to top