Skip to main content
  • Home
  • Development
  • Documentation
  • Donate
  • Operational login
  • Browse the archive

swh logo
SoftwareHeritage
Software
Heritage
Archive
Features
  • Search

  • Downloads

  • Save code now

  • Add forge now

  • Help

  • 06eb59a
  • /
  • examples
  • /
  • regression
  • /
  • plot_cp_regression.py
Raw File Download

To reference or cite the objects present in the Software Heritage archive, permalinks based on SoftWare Hash IDentifiers (SWHIDs) must be used.
Select below a type of object currently browsed in order to display its associated SWHID and permalink.

  • content
  • directory
content badge Iframe embedding
swh:1:cnt:9e474c4076f304c548779421eb88327feccd4458
directory badge Iframe embedding
swh:1:dir:e51bf11783429378614dc5746abe73bf730bfd4c

This interface enables to generate software citations, provided that the root directory of browsed objects contains a citation.cff or codemeta.json file.
Select below a type of object currently browsed in order to generate citations for them.

  • content
  • directory
Generate software citation in BibTex format (requires biblatex-software package)
Generating citation ...
Generate software citation in BibTex format (requires biblatex-software package)
Generating citation ...
plot_cp_regression.py
"""
CP tensor regression
====================

Example on how to use :class:`tensorly.regression.cp_regression.CPRegressor` to perform tensor regression.
"""

import matplotlib.pyplot as plt
from tensorly.base import tensor_to_vec, partial_tensor_to_vec
from tensorly.datasets.synthetic import gen_image
from tensorly.regression.cp_regression import CPRegressor
import tensorly as tl

# Parameter of the experiment
image_height = 25
image_width = 25
# shape of the images
patterns = ['rectangle', 'swiss', 'circle']
# ranks to test
ranks = [1, 2, 3, 4, 5]

# Generate random samples
rng = tl.check_random_state(1)
X = tl.tensor(rng.normal(size=(1000, image_height, image_width), loc=0, scale=1))


# Parameters of the plot, deduced from the data
n_rows = len(patterns)
n_columns = len(ranks) + 1
# Plot the three images
fig = plt.figure()

for i, pattern in enumerate(patterns):

    # Generate the original image
    weight_img = gen_image(region=pattern, image_height=image_height, image_width=image_width)
    weight_img = tl.tensor(weight_img)

    # Generate the labels
    y = tl.dot(partial_tensor_to_vec(X, skip_begin=1), tensor_to_vec(weight_img))

    # Plot the original weights
    ax = fig.add_subplot(n_rows, n_columns, i*n_columns + 1)
    ax.imshow(tl.to_numpy(weight_img), cmap=plt.cm.OrRd, interpolation='nearest')
    ax.set_axis_off()
    if i == 0:
        ax.set_title('Original\nweights')

    for j, rank in enumerate(ranks):

        # Create a tensor Regressor estimator
        estimator = CPRegressor(weight_rank=rank, tol=10e-7, n_iter_max=100, reg_W=1, verbose=0)

        # Fit the estimator to the data
        estimator.fit(X, y)

        ax = fig.add_subplot(n_rows, n_columns, i*n_columns + j + 2)
        ax.imshow(tl.to_numpy(estimator.weight_tensor_), cmap=plt.cm.OrRd, interpolation='nearest')
        ax.set_axis_off()

        if i == 0:
            ax.set_title('Learned\nrank = {}'.format(rank))

plt.suptitle("CP tensor regression")
plt.show()

back to top

Software Heritage — Copyright (C) 2015–2025, The Software Heritage developers. License: GNU AGPLv3+.
The source code of Software Heritage itself is available on our development forge.
The source code files archived by Software Heritage are available under their own copyright and licenses.
Terms of use: Archive access, API— Content policy— Contact— JavaScript license information— Web API