Skip to main content
  • Home
  • Development
  • Documentation
  • Donate
  • Operational login
  • Browse the archive

swh logo
SoftwareHeritage
Software
Heritage
Archive
Features
  • Search

  • Downloads

  • Save code now

  • Add forge now

  • Help

  • bd626d3
  • /
  • parmap.ml
Raw File Download
Permalinks

To reference or cite the objects present in the Software Heritage archive, permalinks based on SoftWare Hash IDentifiers (SWHIDs) must be used.
Select below a type of object currently browsed in order to display its associated SWHID and permalink.

  • content
  • directory
content badge Iframe embedding
swh:1:cnt:9f26fb8841033a660eec4b0060a19df5cea6c1c0
directory badge Iframe embedding
swh:1:dir:bd626d3a844a9e0d01c649d4e255fa860c0587ab
Citations

This interface enables to generate software citations, provided that the root directory of browsed objects contains a citation.cff or codemeta.json file.
Select below a type of object currently browsed in order to generate citations for them.

  • content
  • directory
Generate software citation in BibTex format (requires biblatex-software package)
Generating citation ...
Generate software citation in BibTex format (requires biblatex-software package)
Generating citation ...
parmap.ml
(**************************************************************************)
(* ParMap: a simple library to perform Map computations on a multi-core   *)
(*                                                                        *)
(*  Author(s):  Marco Danelutto, Roberto Di Cosmo                         *)
(*                                                                        *)
(*  This library is free software: you can redistribute it and/or modify  *)
(*  it under the terms of the GNU Lesser General Public License as        *)
(*  published by the Free Software Foundation, either version 2 of the    *)
(*  License, or (at your option) any later version.  A special linking    *)
(*  exception to the GNU Lesser General Public License applies to this    *)
(*  library, see the LICENSE file for more information.                   *)
(**************************************************************************)

module Utils = Parmap_utils

(* OS related constants *)

(* sequence type, subsuming lists and arrays *)
type 'a sequence = L of 'a list | A of 'a array

let debug_enabled = ref false

(* toggle debugging *)
let debugging b = debug_enabled:=b

(* default number of cores, and a setter function *)

let default_ncores=ref (max 2 (Setcore.numcores()-1));;

let set_default_ncores n = default_ncores := n;;
let get_default_ncores () = !default_ncores;;

let ncores = ref 0;;

let set_ncores n = ncores := n;;
let get_ncores () = !ncores

(* core mapping *)

let no_core_pinning = ref false

let disable_core_pinning () =
  no_core_pinning := true

let enable_core_pinning () =
  no_core_pinning := false

let core_mapping = ref None

let set_core_mapping (m: int array) = core_mapping := Some m

(* worker process rank *)

let masters_rank = -1
let rank = ref masters_rank

let set_rank n = rank := n
let get_rank () = !rank

(* exception handling code *)

let handle_exc core msg =
  Utils.log_error "aborting due to exception on core %d: %s" core msg; exit 1;;

(* Helper functions for stdout/stderr redirection *)

let can_redirect path =
  if not(Sys.file_exists path) then
    try
      Unix.mkdir path 0o777; true
    with Unix.Unix_error(e,_s,_s') ->
      (* another job may have created it between the check and the mkdir *)
      if e == Unix.EEXIST then true
      else begin
	      (Printf.eprintf "[Pid %d]: Error creating %s : %s; proceeding \
			       without stdout/stderr redirection\n%!"
		 (Unix.getpid ()) path (Unix.error_message e));
	      false
	end
  else true

let log_debug fmt =
  Printf.kprintf (
    if !debug_enabled then begin
      (fun s -> Format.eprintf "[Parmap]: %s@." s)
    end else ignore
  ) fmt

(* freopen emulation, from Xavier's suggestion on OCaml mailing list *)
let reopen_out outchan path fname =
  if can_redirect path then
    begin
      flush outchan;
      let filename = Filename.concat path fname in
      let fd1 = Unix.descr_of_out_channel outchan in
      let fd2 = Unix.openfile
                  filename [Unix.O_WRONLY; Unix.O_CREAT; Unix.O_TRUNC] 0o666 in
      Unix.dup2 fd2 fd1;
      Unix.close fd2
    end
  else ()

(* send stdout and stderr to a file to avoid mixing output from different
   cores, if enabled *)
let redirect ?(path = (Printf.sprintf "/tmp/.parmap.%d" (Unix.getpid ()))) ~id =
      reopen_out stdout path (Printf.sprintf "stdout.%d" id);
      reopen_out stderr path (Printf.sprintf "stderr.%d" id);;

(* unmarshal from a mmap seen as a bigarray *)
let unmarshal fd =
 let a =
   Bigarray.Array1.map_file fd Bigarray.char Bigarray.c_layout true (-1) in
 let res = Bytearray.unmarshal a 0 in
 Unix.close fd;
 res

(* marshal to a mmap seen as a bigarray *)

(* System dependent notes:

    (* a reasonable size for mmapping a file containing even huge result data *)
    let huge_size = if Sys.word_size = 64 then 1 lsl 32 else 1 lsl 26

    - on Linux kernels, we might allocate a mmapped memory area of huge_size
      and marshal into it directly

      let ba = Bigarray.Array1.map_file
                 fd Bigarray.char Bigarray.c_layout true huge_size in
      ignore(Bytearray.marshal_to_buffer ba 0 v [Marshal.Closures]);
      Unix.close fd

    - to be compatible with other systems, notably Mac OS X, which insist in
      allocating *all*
      the declared memory area even for a sparse file, we must choose a less
      efficient approach:
       * marshal the value v to a string s, and compute its size
       * allocate a mmap of that exact size,
       * copy the string to that mmap
      this allocates twice as much memory, and incurs an extra copy of the
      value v
*)

let marshal fd v =
  let s = Marshal.to_string v [Marshal.Closures] in
  ignore(Bytearray.mmap_of_string fd s)

(* Exit the program with calling [at_exit] handlers *)
external sys_exit : int -> 'a = "caml_sys_exit"

let spawn_many n ~in_subprocess =
  let rec loop i acc =
    if i = n then
      acc
    else
      match Unix.fork() with
        0 ->
        (* [at_exit] handlers are called in reverse order of registration.
           By registering a handler that exits prematurely, we prevent the
           execution of handlers registered before the fork.

           This ignores the exit code provided by the user, but we ignore
           it anyway in [wait_for_pids].
        *)
        at_exit (fun () -> sys_exit 0);
        set_rank i;
        in_subprocess i;
        exit 0
      | -1 ->
        Utils.log_error "fork error: pid %d; i=%d" (Unix.getpid()) i;
        loop (i + 1) acc
      | pid ->
        loop (i + 1) (pid :: acc)
  in
  (* call the GC before forking *)
  Gc.compact ();
  loop 0 []

let wait_for_pids pids =
  let rec wait_for_pid pid =
    try ignore(Unix.waitpid [] pid : int * Unix.process_status)
    with
    | Unix.Unix_error (Unix.ECHILD, _, _) -> ()
    | Unix.Unix_error (Unix.EINTR, _, _) -> wait_for_pid pid
  in
  List.iter wait_for_pid pids

let run_many n ~in_subprocess =
  wait_for_pids (spawn_many n ~in_subprocess)

(* a simple mapper function that computes 1/nth of the data on each of the n
   cores in one iteration *)
let simplemapper (init:int -> unit) (finalize: unit -> unit) ncores' compute opid al collect =
  (* flush everything *)
  flush_all();
  (* init task parameters *)
  let ln = Array.length al in
  set_ncores (min ln (max 1 ncores'));
  let chunksize = max 1 (ln / !ncores) in
  log_debug
    "simplemapper on %d elements, on %d cores, chunksize = %d%!"
    ln !ncores chunksize;
  (* create descriptors to mmap *)
  let fdarr=Array.init !ncores (fun _ -> Utils.tempfd()) in
  (* run children *)
  run_many !ncores ~in_subprocess:(fun i ->
    init i;  (* call initialization function *)
    Pervasives.at_exit finalize; (* register finalization function *)
    let lo=i*chunksize in
    let hi=if i = !ncores - 1 then ln - 1 else (i + 1) * chunksize - 1 in
    let exc_handler e j = (* handle an exception at index j *)
      Utils.log_error
        "error at index j=%d in (%d,%d), chunksize=%d of a total of \
         %d got exception %s on core %d \n%!"
        j lo hi chunksize (hi-lo+1) (Printexc.to_string e) i;
      exit 1
    in
    let v = compute al lo hi opid exc_handler in
    marshal fdarr.(i) v);
  (* read in all data *)
  let res = ref [] in
  (* iterate in reverse order, to accumulate in the right order *)
  for i = 0 to !ncores - 1 do
      res:= ((unmarshal fdarr.((!ncores-1)-i)):'d)::!res;
  done;
  (* collect all results *)
  collect !res

(* a simple iteration function that iterates on 1/nth of the data on each of
   the n cores *)
let simpleiter init finalize ncores' compute al =
  (* flush everything *)
  flush_all();
  (* init task parameters *)
  let ln = Array.length al in
  set_ncores (min ln (max 1 ncores'));
  let chunksize = max 1 (ln / !ncores) in
  log_debug
    "simplemapper on %d elements, on %d cores, chunksize = %d%!"
    ln !ncores chunksize;
  (* run children *)
  run_many !ncores ~in_subprocess:(fun i ->
    init i;  (* call initialization function *)
    Pervasives.at_exit finalize; (* register finalization function *)
    let lo=i*chunksize in
    let hi=if i= !ncores - 1 then ln-1 else (i+1)*chunksize-1 in
    let exc_handler e j = (* handle an exception at index j *)
      Utils.log_error
        "error at index j=%d in (%d,%d), chunksize=%d of a total of \
         %d got exception %s on core %d \n%!"
	j lo hi chunksize (hi-lo+1) (Printexc.to_string e) i;
      exit 1
    in
    compute al lo hi exc_handler);
  (* return with no value *)

(* a more sophisticated mapper function, with automatic load balancing *)

(* the type of messages exchanged between master and workers *)
type msg_to_master = Ready of int | Error of int * string
type msg_to_worker = Finished | Task of int

let setup_children_chans oc pipedown ?fdarr i =
  (if !no_core_pinning then ()
   else match !core_mapping with
     (* map process i to core i, or, if a core_mapping exist,
        to core_mapping.(i), reusing core_mapping as many times as needed *)
     | None -> Setcore.setcore i
     | Some m ->
       let ml = Array.length m in
       Setcore.setcore m.(i mod ml));
  (* close the other ends of the pipe and convert my ends to ic/oc *)
  Unix.close (snd pipedown.(i));
  let pid = Unix.getpid() in
  let ic = Unix.in_channel_of_descr (fst pipedown.(i)) in
  let receive () = Marshal.from_channel ic in
  let signal v = Marshal.to_channel oc v []; flush oc in
  let return v =
    let d = Unix.gettimeofday() in
    let _ = match fdarr with Some fdarr -> marshal fdarr.(i) v | None -> () in
    log_debug "worker elapsed %f in marshalling" (Unix.gettimeofday() -. d) in
  let finish () =
    (log_debug "shutting down (pid=%d)\n%!" pid;
     try close_in ic; close_out oc with _ -> ()
    );
    exit 0 in
  receive, signal, return, finish, pid

(* parametric mapper primitive that captures the parallel structure *)
let mapper (init:int -> unit) (finalize:unit -> unit) ncores' ~chunksize compute opid al collect =
  let ln = Array.length al in
  if ln=0 then (collect []) else
  begin
   set_ncores (min ln (max 1 ncores'));
   log_debug "mapper on %d elements, on %d cores%!" ln !ncores;
   match chunksize with
     None ->
       (* no need of load balancing *)
       simplemapper init finalize !ncores compute opid al collect
   | Some v when !ncores >= ln/v ->
       (* no need of load balancing if more cores than tasks *)
       simplemapper init finalize !ncores compute opid al collect
   | Some v ->
       (* init task parameters : ntasks > 0 here,
          as otherwise ncores >= 1 >= ln/v = ntasks and we would take
          the branch above *)
       let chunksize = v and ntasks = ln/v in
       (* flush everything *)
       flush_all ();
       (* create descriptors to mmap *)
       let fdarr=Array.init !ncores (fun _ -> Utils.tempfd()) in
       (* setup communication channel with the workers *)
       let pipedown=Array.init !ncores (fun _ -> Unix.pipe ()) in
       let pipeup_rd,pipeup_wr=Unix.pipe () in
       let oc_up = Unix.out_channel_of_descr pipeup_wr in
       (* run children *)
       let pids =
         spawn_many !ncores ~in_subprocess:(fun i ->
	   init i; (* call initialization function *)
	   Pervasives.at_exit finalize; (* register finalization function *)
           let d=Unix.gettimeofday()  in
           (* primitives for communication *)
           Unix.close pipeup_rd;
           let receive,signal,return,finish,pid =
             setup_children_chans oc_up pipedown ~fdarr i in
           let reschunk=ref opid in
           let computetask n = (* compute chunk number n *)
             let lo=n*chunksize in
             let hi=if n=ntasks-1 then ln-1 else (n+1)*chunksize-1 in
             let exc_handler e j = (* handle an exception at index j *)
               begin
                 let errmsg = Printexc.to_string e in
                 Utils.log_error
                   "error at index j=%d in (%d,%d), chunksize=%d of a \
                    total of %d got exception %s on core %d \n%!"
         	   j lo hi chunksize (hi-lo+1) errmsg i;
                 signal (Error (i,errmsg): msg_to_master);
                 finish()
               end
             in
             reschunk:= compute al lo hi !reschunk exc_handler;
             log_debug
               "worker on core %d (pid=%d), segment (%d,%d) of data of \
                length %d, chunksize=%d finished in %f seconds"
               i pid lo hi ln chunksize (Unix.gettimeofday() -. d)
           in
           while true do
             (* ask for work until we are finished *)
             signal (Ready i);
             match receive() with
             | Finished -> return (!reschunk:'d); finish ()
             | Task n -> computetask n
           done)
       in

       (* close unused ends of the pipes *)
       Array.iter (fun (rfd,_) -> Unix.close rfd) pipedown;
       Unix.close pipeup_wr;

       (* get ic/oc/wfdl *)
       let ocs=
         Array.init !ncores
           (fun n -> Unix.out_channel_of_descr (snd pipedown.(n))) in
       let ic=Unix.in_channel_of_descr pipeup_rd in

       (* feed workers until all tasks are finished *)
       for i=0 to ntasks-1 do
         match Marshal.from_channel ic with
           Ready w ->
             (log_debug "sending task %d to worker %d" i w;
              let oc = ocs.(w) in
              (Marshal.to_channel oc (Task i) []); flush oc)
         | (Error (core,msg): msg_to_master) -> handle_exc core msg
       done;

       (* send termination token to all children *)
       Array.iter (fun oc ->
         Marshal.to_channel oc Finished [];
         flush oc;
         close_out oc
       ) ocs;

       (* wait for all children to terminate *)
       wait_for_pids pids;

       (* read in all data *)
       let res = ref [] in
       (* iterate in reverse order, to accumulate in the right order *)
       for i = 0 to !ncores-1 do
         res:= ((unmarshal fdarr.((!ncores-1)-i)):'d)::!res;
       done;
       (* collect all results *)
       collect !res
  end

(* parametric iteration primitive that captures the parallel structure *)
let geniter init finalize ncores' ~chunksize compute al =
  let ln = Array.length al in
  if ln=0 then () else
  begin
   set_ncores (min ln (max 1 ncores'));
   log_debug "geniter on %d elements, on %d cores%!" ln !ncores;
   match chunksize with
     None ->
       simpleiter init finalize !ncores compute al (* no need of load balancing *)
   | Some v when !ncores >= ln/v ->
       simpleiter init finalize !ncores compute al (* no need of load balancing *)
   | Some v ->
       (* init task parameters *)
       let chunksize = v and ntasks = ln/v in
       (* flush everything *)
       flush_all ();
       (* setup communication channel with the workers *)
       let pipedown=Array.init !ncores (fun _ -> Unix.pipe ()) in
       let pipeup_rd,pipeup_wr=Unix.pipe () in
       let oc_up = Unix.out_channel_of_descr pipeup_wr in
       (* spawn children *)
       let pids =
         spawn_many !ncores ~in_subprocess:(fun i ->
	   init i; (* call initialization function *)
	   Pervasives.at_exit finalize; (* register finalization function *)
           let d=Unix.gettimeofday()  in
           (* primitives for communication *)
           Unix.close pipeup_rd;
           let receive,signal,return,finish,pid =
             setup_children_chans oc_up pipedown i in
           let computetask n = (* compute chunk number n *)
 	     let lo=n*chunksize in
 	     let hi=if n=ntasks-1 then ln-1 else (n+1)*chunksize-1 in
 	     let exc_handler e j = (* handle an exception at index j *)
 	       begin
 		 let errmsg = Printexc.to_string e in
                 Utils.log_error
                   "error at index j=%d in (%d,%d), chunksize=%d of \
                    a total of %d got exception %s on core %d \n%!"
 		   j lo hi chunksize (hi-lo+1) errmsg i;
 		 signal (Error (i,errmsg): msg_to_master);
                 finish()
 	       end
 	     in
 	     compute al lo hi exc_handler;
 	     log_debug
               "worker on core %d (pid=%d), segment (%d,%d) of data \
                of length %d, chunksize=%d finished in %f seconds"
 	       i pid lo hi ln chunksize (Unix.gettimeofday() -. d)
 	   in
 	   while true do
 	     (* ask for work until we are finished *)
 	     signal (Ready i);
 	     match receive() with
 	     | Finished -> return(); finish ()
 	     | Task n -> computetask n
           done)
       in

       (* close unused ends of the pipes *)
       Array.iter (fun (rfd,_) -> Unix.close rfd) pipedown;
       Unix.close pipeup_wr;

       (* get ic/oc/wfdl *)
       let ocs=Array.init !ncores
         (fun n -> Unix.out_channel_of_descr (snd pipedown.(n))) in
       let ic=Unix.in_channel_of_descr pipeup_rd in

       (* feed workers until all tasks are finished *)
       for i=0 to ntasks-1 do
 	match Marshal.from_channel ic with
 	  Ready w ->
 	    (log_debug "sending task %d to worker %d" i w;
 	     let oc = ocs.(w) in
 	     (Marshal.to_channel oc (Task i) []); flush oc)
 	| (Error (core,msg): msg_to_master) -> handle_exc core msg
       done;

       (* send termination token to all children *)
       Array.iter (fun oc ->
 	Marshal.to_channel oc Finished [];
         flush oc;
         close_out oc
       ) ocs;

       (* wait for all children to terminate *)
       wait_for_pids pids;
       (* no data to return *)
  end

(* the parallel mapfold function *)

let parmapifold
    ?(init = fun _ -> ())
    ?(finalize = fun () -> ())
    ?(ncores= !default_ncores)
    ?(chunksize)
    (f:int -> 'a -> 'b)
    (s:'a sequence)
    (op:'b->'c->'c)
    (opid:'c)
    (concat:'c->'c->'c) : 'c=
  (* enforce array to speed up access to the list elements *)
  let al = match s with A al -> al | L l  -> Array.of_list l in
  let compute al lo hi previous exc_handler =
    (* iterate in reverse order, to accumulate in the right order *)
    let r = ref previous in
    for j=0 to (hi-lo) do
      try
        let idx = hi-j in
	r := op (f idx (Array.unsafe_get al idx)) !r;
      with e -> exc_handler e j
    done; !r
  in
  mapper
    init finalize ncores ~chunksize compute opid al (fun r -> Utils.fold_right concat r opid)

let parmapfold
    ?(init = fun _ -> ())
    ?(finalize = fun () -> ())
    ?ncores
    ?(chunksize)
    (f:'a -> 'b)
    (s:'a sequence)
    (op:'b->'c->'c)
    (opid:'c)
    (concat:'c->'c->'c) : 'c=
  parmapifold ~init ~finalize ?ncores ?chunksize (fun _ x -> f x) s op opid concat

(* the parallel map function *)

let parmapi
    ?(init = fun _ -> ())
    ?(finalize = fun () -> ())
    ?(ncores= !default_ncores)
    ?chunksize
    (f:int ->'a -> 'b)
    (s:'a sequence) : 'b list=
  (* enforce array to speed up access to the list elements *)
  let al = match s with A al -> al | L l  -> Array.of_list l in
  let compute al lo hi previous exc_handler =
    (* iterate in reverse order, to accumulate in the right order,
       and add to acc *)
    let f' j =
      try let idx = lo+j in f idx (Array.unsafe_get al idx)
      with e -> exc_handler e j in
    let rec aux acc =
      function
	  0 ->  (f' 0)::acc
	| n ->  aux ((f' n)::acc) (n-1)
    in aux previous (hi-lo)
  in
  mapper init finalize ncores ~chunksize compute [] al  (fun r -> Utils.concat_tr r)

let parmap ?init ?finalize ?ncores ?chunksize (f:'a -> 'b) (s:'a sequence) : 'b list=
    parmapi ?init ?finalize ?ncores ?chunksize (fun _ x -> f x) s

(* the parallel fold function *)

let parfold
    ?(init = fun _ -> ())
    ?(finalize = fun () -> ())
    ?(ncores= !default_ncores)
    ?chunksize
    (op:'a -> 'b -> 'b)
    (s:'a sequence)
    (opid:'b)
    (concat:'b->'b->'b) : 'b=
    parmapfold ~init ~finalize ~ncores ?chunksize (fun x -> x) s op opid concat

(* the parallel map function, on arrays *)

let mapi_range lo hi (f:int -> 'a -> 'b) a =
  let l = hi-lo in
  if l < 0 then [||] else begin
    let r = Array.create (l+1) (f 0 (Array.unsafe_get a lo)) in
    for i = 1 to l do
      let idx = lo+i in
      Array.unsafe_set r i (f idx (Array.unsafe_get a idx))
    done;
    r
  end

let array_parmapi
    ?(init = fun _ -> ())
    ?(finalize = fun () -> ())
    ?(ncores= !default_ncores)
    ?chunksize
    (f:int -> 'a -> 'b)
    (al:'a array) : 'b array=
  let compute a lo hi previous exc_handler =
    try
      Array.concat [(mapi_range lo hi f a);previous]
    with e -> exc_handler e lo
  in
  mapper init finalize ncores ~chunksize compute [||] al  (fun r -> Array.concat r)

let array_parmap ?init ?finalize ?ncores ?chunksize (f:'a -> 'b) (al:'a array) : 'b array=
  array_parmapi ?init ?finalize ?ncores ?chunksize (fun _ x -> f x) al

(* This code is highly optimised for operations on float arrays:

   - knowing in advance the size of the result allows to
     pre-allocate it in a shared memory space as a Bigarray;

   - to write in the Bigarray memory area using the unsafe
     functions for Arrays, we trick the OCaml compiler into
     using the Bigarray memory as an Array as follows

       Array.unsafe_get (Obj.magic arr_out) 1

     This works because OCaml compiles access to float arrays
     as unboxed data, without further integrity checks;

   - the final copy into a real OCaml array is done via a memcpy in C.

     This approach gives a performance which is 2 to 3 times higher
     w.r.t. array_parmap, at the price of using Obj.magic and
     knowledge on the internal representation of arrays and bigarrays.
 *)

exception WrongArraySize

type buf=
    (float, Bigarray.float64_elt, Bigarray.c_layout) Bigarray.Array1.t *
      int;; (* should be a long int some day *)

let init_shared_buffer a =
  let size = Array.length a in
  let fd = Utils.tempfd() in
  let arr =
    Bigarray.Array1.map_file fd Bigarray.float64 Bigarray.c_layout true size in

  (* The mmap() function shall add an extra reference to the file associated
     with the file descriptor fildes which is not removed by a subsequent
     close() on that file descriptor.
     http://pubs.opengroup.org/onlinepubs/009695399/functions/mmap.html
  *)
  Unix.close fd; (arr,size)

let array_float_parmapi
    ?(init = fun _ -> ())
    ?(finalize = fun () -> ())
    ?(ncores= !default_ncores)
    ?chunksize
    ?result
    ?sharedbuffer
    (f:int -> 'a -> float)
    (al:'a array) : float array =
  let size = Array.length al in
  if size=0 then [| |] else
  begin
   let barr_out =
     match sharedbuffer with
       Some (arr,s) ->
         if s<size then
           (Utils.log_error
              "shared buffer is too small to hold the input in \
               array_float_parmap";
            raise WrongArraySize)
         else arr
     | None -> fst (init_shared_buffer al)
   in
   (* trick the compiler into accessing the Bigarray memory area as a float
      array: the data in Bigarray is placed at offset 1 w.r.t. a normal array,
      so we get a pointer to that zone into arr_out_as_array, and have it typed
      as a float array *)
   let barr_out_as_array = Array.unsafe_get (Obj.magic barr_out) 1 in
   let compute _ lo hi _ exc_handler =
     try
       for i=lo to hi do
         Array.unsafe_set barr_out_as_array i (f i (Array.unsafe_get al i))
       done
     with e -> exc_handler e lo
   in
   mapper init finalize ncores ~chunksize compute () al (fun _r -> ());
   let res =
     match result with
       None -> Bytearray.to_floatarray barr_out size
     | Some a ->
         if Array.length a < size then
           (Utils.log_error
              "result array is too small to hold the result in \
               array_float_parmap";
            raise WrongArraySize)
         else
           Bytearray.to_this_floatarray a barr_out size
   in res
  end

let array_float_parmap
    ?(init = fun _ -> ())
    ?(finalize = fun () -> ())
    ?ncores
    ?chunksize
    ?result
    ?sharedbuffer
    (f:'a -> float)
    (al:'a array) : float array =
  array_float_parmapi
    ~init ~finalize ?ncores ?chunksize ?result ?sharedbuffer (fun _ x -> f x) al

(* the parallel iteration function *)

let pariteri
    ?(init = fun _ -> ())
    ?(finalize = fun () -> ())
    ?(ncores= !default_ncores)
    ?chunksize
    (f:int -> 'a -> unit)
    (s:'a sequence) : unit=
  (* enforce array to speed up access to the list elements *)
  let al = match s with A al -> al | L l  -> Array.of_list l in
  let compute al lo hi exc_handler =
    (* iterate on the given segment *)
    let f' j =
      try let idx = lo+j in f idx (Array.unsafe_get al idx)
      with e -> exc_handler e j in
    for i = 0 to hi-lo do
      f' i
    done
  in
  geniter init finalize ncores ~chunksize compute al

let pariter ?init ?finalize ?ncores ?chunksize (f:'a -> unit) (s:'a sequence) : unit=
  pariteri ?init ?finalize ?ncores ?chunksize (fun _ x -> f x) s

Software Heritage — Copyright (C) 2015–2025, The Software Heritage developers. License: GNU AGPLv3+.
The source code of Software Heritage itself is available on our development forge.
The source code files archived by Software Heritage are available under their own copyright and licenses.
Terms of use: Archive access, API— Contact— JavaScript license information— Web API

back to top