Skip to main content
  • Home
  • Development
  • Documentation
  • Donate
  • Operational login
  • Browse the archive

swh logo
SoftwareHeritage
Software
Heritage
Archive
Features
  • Search

  • Downloads

  • Save code now

  • Add forge now

  • Help

https://github.com/cran/cutpointr
12 May 2022, 17:57:39 UTC
  • Code
  • Branches (12)
  • Releases (0)
  • Visits
    • Branches
    • Releases
    • HEAD
    • refs/heads/master
    • refs/tags/0.7.2
    • refs/tags/0.7.3
    • refs/tags/0.7.4
    • refs/tags/0.7.6
    • refs/tags/1.0.0
    • refs/tags/1.0.1
    • refs/tags/1.0.2
    • refs/tags/1.0.32
    • refs/tags/1.1.0
    • refs/tags/1.1.1
    • refs/tags/1.1.2
    No releases to show
  • 2cb721c
  • /
  • R
  • /
  • roc.R
Raw File Download
Take a new snapshot of a software origin

If the archived software origin currently browsed is not synchronized with its upstream version (for instance when new commits have been issued), you can explicitly request Software Heritage to take a new snapshot of it.

Use the form below to proceed. Once a request has been submitted and accepted, it will be processed as soon as possible. You can then check its processing state by visiting this dedicated page.
swh spinner

Processing "take a new snapshot" request ...

Permalinks

To reference or cite the objects present in the Software Heritage archive, permalinks based on SoftWare Hash IDentifiers (SWHIDs) must be used.
Select below a type of object currently browsed in order to display its associated SWHID and permalink.

  • content
  • directory
  • revision
  • snapshot
origin badgecontent badge Iframe embedding
swh:1:cnt:9f9bd447406a3e62d0009ccb19d827281723371a
origin badgedirectory badge Iframe embedding
swh:1:dir:c49f88dc4461ee4f7d969eefddc5d36e2726b09d
origin badgerevision badge
swh:1:rev:94a7e298b1a50d93e8a9ccb813a070f7b30f3da1
origin badgesnapshot badge
swh:1:snp:59fa548f9fdef2e9cfbec66f8a33531d45433c4b
Citations

This interface enables to generate software citations, provided that the root directory of browsed objects contains a citation.cff or codemeta.json file.
Select below a type of object currently browsed in order to generate citations for them.

  • content
  • directory
  • revision
  • snapshot
Generate software citation in BibTex format (requires biblatex-software package)
Generating citation ...
Generate software citation in BibTex format (requires biblatex-software package)
Generating citation ...
Generate software citation in BibTex format (requires biblatex-software package)
Generating citation ...
Generate software citation in BibTex format (requires biblatex-software package)
Generating citation ...
Tip revision: 94a7e298b1a50d93e8a9ccb813a070f7b30f3da1 authored by Christian Thiele on 21 March 2018, 08:27:24 UTC
version 0.7.2
Tip revision: 94a7e29
roc.R
#' Calculate a ROC curve
#'
#' Given a \code{data.frame} with a numeric predictor variable and a binary outcome
#' variable this function returns a \code{data.frame} that includes all elements of
#' the confusion matrix (true positives, false positives, true negatives,
#' and false negatives) for every unique value of the predictor variable.
#' Additionally, the true positive rate (tpr), false positive rate (fpr),
#' true negative rate (tnr) and false negative rate (fnr) are returned.
#'
#' To enable classifying all observations as belonging to only one class the
#' predictor values will be augmented by Inf or -Inf.
#'
#' @param data A data.frame or matrix. Will be converted to a data.frame.
#' @param x (character) The numeric independent (predictor) variable.
#' @param class (character) A binary vector of outcome values.
#' @param pos_class The value of 'class' that represents the positive cases.
#' @param neg_class The value of 'class' that represents the negative cases.
#' @param direction (character) One of ">=" or "<=". Specifies if the positive
#' class is associated with higher values of x (default).
#' @param silent If FALSE and the ROC curve contains no positives or negatives,
#' a warning is generated.
#' @return A data frame with the columns x.sorted, tp, fp, tn, fn, tpr, tnr, fpr,
#' and fnr.
#' @examples
#' ## First two classes of the iris data
#' dat <- iris[1:100, ]
#' roc(data = dat, x = "Petal.Width", class = "Species",
#' pos_class = "versicolor", neg_class = "setosa", direction = ">=")
#' @export
#' @family main cutpointr functions
#' @source
#' Forked from the \pkg{ROCR} package
roc <- function(data, x, class, pos_class, neg_class, direction = ">=",
                silent = FALSE) {
    stopifnot(direction %in% c(">=", "<="))
    data <- as.data.frame(data)
    stopifnot(is.character(x))
    stopifnot(is.character(class))
    class <- data[, class]
    x <- data[, x]

    if (direction == ">=") {
        pred.order <- order(x, decreasing = TRUE)
        x.sorted <- x[pred.order]
        dups <- rev(duplicated(rev(x.sorted)))
        x.sorted <- x.sorted[!dups]
        class.sorted <- class[pred.order]
        tp <- cumsum(is_equal_cpp(class.sorted, pos_class))
        tp <- tp[!dups]
        fp <- cumsum(is_equal_cpp(class.sorted, neg_class))
        fp <- fp[!dups]
        n_pos <- tp[length(tp)]
        n_neg <- length(class) - n_pos
        tn <- n_neg - fp
        fn <- n_pos + n_neg - tp - fp - tn

        if (!(any_inf(x.sorted))) {
            x.sorted <- c(Inf, x.sorted)
            class.sorted <- c(NA, class.sorted)
            tp <- c(0, tp)
            fp <- c(0, fp)
            tn <- c(n_neg, tn)
            fn <- c(n_pos, fn)
        }
    } else if (direction == "<=") {
        pred.order <- order(x, decreasing = FALSE)
        x.sorted <- x[pred.order]
        dups <- rev(duplicated(rev(x.sorted)))
        x.sorted <- x.sorted[!dups]
        class.sorted <- class[pred.order]
        tp <- cumsum(is_equal_cpp(class.sorted, pos_class))
        tp <- tp[!dups]
        fp <- cumsum(is_equal_cpp(class.sorted, neg_class))
        fp <- fp[!dups]
        n_pos <- tp[length(tp)]
        n_neg <- length(class) - n_pos
        tn <- n_neg - fp
        fn <- n_pos + n_neg - tp - fp - tn

        if (!(any_inf(x.sorted))) {
            x.sorted <- c(-Inf, x.sorted)
            class.sorted <- c(NA, class.sorted)
            tp <- c(0, tp)
            fp <- c(0, fp)
            tn <- c(n_neg, tn)
            fn <- c(n_pos, fn)
        }
    }
    tpr <- tp / n_pos
    tnr <- tn / n_neg
    fpr <- 1 - tnr
    fnr <- 1 - tpr
    res <- data.frame(x.sorted, tp, fp, tn, fn, tpr, tnr, fpr, fnr)
    class(res) <- c(class(res), "roc_cutpointr")
    if (!silent) {
        if (is.nan(res$tpr[1])) warning("ROC curve contains no positives")
        if (res$fpr[1] == 0 & res$fpr[nrow(res)] == 0) warning("ROC curve contains no negatives")
    }
    return(res)
}

Software Heritage — Copyright (C) 2015–2025, The Software Heritage developers. License: GNU AGPLv3+.
The source code of Software Heritage itself is available on our development forge.
The source code files archived by Software Heritage are available under their own copyright and licenses.
Terms of use: Archive access, API— Contact— JavaScript license information— Web API

back to top