BrainAge_VidalPineiro_UKB_GenMod.Rmd
---
title: "BrainAge_VidalPineiro_ModelGeneration(XGB & LASSO)"
author: "dvp"
date: "11/2/2020"
output:
html_document: default
pdf_document: default
---
```{r setup, include=FALSE}
knitr::opts_chunk$set(echo = TRUE)
library(knitr)
library(kableExtra)
library(cowplot)
library(psych)
library(boot)
library(tidyverse)
library(magrittr)
library(xgboost)
library(caret)
library(mgcv)
library(GGally)
library(gridExtra)
library(missMDA)
library(DiagrammeR)
library(ggpointdensity)
library(glmnet)
raw_folder="./data-raw/BrainAge/UKB/tabulated_data"
data_folder=file.path("./data/BrainAge",paste0("noExcl_scaled"))
try(dir.create(data_folder))
options(bitmapType = "cairo")
squeue = function(user, job) {
df.squeue = system(paste0("squeue --name=", job," -u ",user), intern = T) %>%
strsplit(., " +") %>%
simplify2array() %>%
t() %>%
as.data.frame()
return(df.squeue)
}
```
# Data Preprocessing (commong steps)
## define subsets of vars
We exclude global variables, WM variables and non-Brain variables.
We include Intensity, Cortical Area, CTH, VOlume GWC and subcortical area and intensity
```{r subset vars,echo=F}
if (!file.exists(file.path(data_folder, "vars.Rda"))){
df = read.csv(file.path(raw_folder,"FS_IDPS_all_tp3.csv"))
print("define variables to remove. currently removing non-brain variables")
rm_vars = c(
"Grey.white.contrast.in.unknown..right.hemisphere."
)
gwc_vars = names(df)[grepl("Grey.white", names(df))]
gwc_vars = gwc_vars[! gwc_vars %in% rm_vars]
cth_vars = names(df)[grepl("Mean.thickness.of", names(df))]
cth_vars = cth_vars[! cth_vars %in% rm_vars]
Int_vars = names(df)[grepl("Mean.intensity", names(df))]
Int_vars = Int_vars[! Int_vars %in% rm_vars]
Area_vars = names(df)[grepl("Area.of", names(df))]
Area_vars = Area_vars[! Area_vars %in% rm_vars]
Vol_vars = names(df)[grepl("Volume.of", names(df))]
Vol_vars = Vol_vars[! Vol_vars %in% rm_vars]
T1w_vars = c(Vol_vars, Area_vars, Int_vars, cth_vars, gwc_vars)
save(T1w_vars,
Vol_vars,
Area_vars,
Int_vars,
cth_vars,
gwc_vars,
rm_vars,
file = file.path(data_folder, "vars.Rda"))
} else {
load(file = file.path(data_folder, "vars.Rda"))
}
print(paste("remove vars N:",length(rm_vars)))
print(paste("grey white matter contrast;", "N:",length(gwc_vars)))
print(paste("cth; ","N:",length(cth_vars)))
print(paste("Intensity","N:",length(Int_vars)))
print(paste("Area", "N:",length(Area_vars)))
print(paste("Volume", "N:",length(Vol_vars)))
print(paste("MRI", "N:",length(T1w_vars)))
```
## Loading data and merging data.frames
mergeing all data together (MRI, noMRI, cross and long)
Save as a single file
```{r loading data, echo = F}
if (!file.exists(file.path(data_folder, "All_raw.Rda"))) {
print("loading timpoint 1 data")
df.tp2 = read.csv(file.path(raw_folder, "FS_IDPS_all_tp2.csv"))
df.tp2$wave = 1
print("loading timepoint 1 no-MRI data")
df.tp2.noMRI = read.csv(file.path(raw_folder, "ID_age_all_tp2.csv"))
print("join MRI and noMRIdata")
df.tp2 = left_join(df.tp2, df.tp2.noMRI)
print("loading timepoint 2 data")
df.tp3 = read.csv(file.path(raw_folder, "FS_IDPS_all_tp3.csv"))
df.tp3$wave = 2
print("loading timepoint 2 no-MRI data")
df.tp3.noMRI = read.csv(file.path(raw_folder, "ID_age_all_tp3.csv"))
subs.long = df.tp3$eid
print("loading no-MRI data")
df.noMRI = read.csv(file.path(raw_folder, "ID_all_noMRI.csv"))
print("checking whether subjects in timepoint2 have tp1 data")
subs.long = subs.long[subs.long %in% df.tp2$eid]
print("remove tp3 people without long data")
df.tp3 = df.tp3 %>% filter(eid %in% subs.long)
print("join MRI and noMRIdata")
df.tp3 = left_join(df.tp3, df.tp3.noMRI)
print("merge data")
df =
rbind(df.tp2, df.tp3) %>%
left_join(.,df.noMRI) %>%
mutate(eICV = Volume.of.EstimatedTotalIntraCranial..whole.brain.,
TGMV = Volume.of.TotalGray..whole.brain.,
TBV = Volume.of.SupraTentorialNotVent..whole.brain.,
Center.Cheadle = if_else(UK_Biobank_assessment_centre_c_54.2.0 == 11025, 1,0),
Center.Reading = if_else(UK_Biobank_assessment_centre_c_54.2.0 == 11026, 1,0),
Center.Newcastle = if_else(UK_Biobank_assessment_centre_c_54.2.0 == 11027, 1,0))
vars_noMRI = c("eid",
"wave",
"eICV",
"TGMV",
"TBV",
"Center.Reading",
"Center.Newcastle",
names(df.tp3.noMRI)[-1],
names(df.noMRI)[-1])
df = df %>% dplyr::select(vars_noMRI, T1w_vars)
save(subs.long, vars_noMRI, df, file = file.path(data_folder,"All_raw.Rda"))
} else {
print("loading data. All merged")
load(file = file.path(data_folder,"All_raw.Rda"))
}
```
## Preprocessing T1w data
a) Scale. Use training sample and apply parameters to the whole sample.
```{r preprocess T1w data, echo=T}
if (!file.exists(file.path(data_folder,"All_preproc.Rda"))) {
# check whether all long went to the same center
#table(df$UK_Biobank_assessment_centre_c_54.2.0 == df$UK_Biobank_assessment_centre_c_54.3.0)
## a) scale data (again use training dataset as reference)
# get mean and sd for reference sample
df.pp <- df %>% filter(!eid %in% subs.long)
df.scale = data.frame(T1w_vars,
mean = df.pp %>% summarise_at(T1w_vars, mean, na.rm = T) %>% t(),
sd = df.pp %>% summarise_at(T1w_vars, sd, na.rm = T) %>% t())
## apply coefficients to whole dataset
for (vars in rownames(df.scale)) {
print(vars)
df = df %>% mutate(!!vars := (get(vars) - df.scale[vars, "mean"]) / df.scale[vars, "sd"])
}
# save
save(df, df.scale, file = file.path(data_folder,"All_preproc.Rda"))
} else {
load(file.path(data_folder,"All_preproc.Rda"))
}
```
## Select Train and Test
Separate train and test data. That is separate longitudinal and cross-sectional data
```{r train and test data}
df.Train <- df %>% filter(!eid %in% subs.long)
df.Test <- df %>% filter(eid %in% subs.long)
```
## Basic demogrpahics of train and test sample
Sex and Age and other sociodemographic info
```{r Basic Demographic}
c("n: train/test", dim(df.Train)[1], dim(df.Test)[1], dim(df.Test)[1]/2)
c("age range train/test", range(df.Train$age), range(df.Test$age))
c("age mean - sd train/test", mean(df.Train$age), mean(df.Test$age), sd(df.Train$age), sd(df.Test$age))
c("Sex: Train:", table(df.Train$sex))
tmp= df.Test %>% group_by(eid) %>% summarise(n = n(),
AgeBsl = min(age),
AgeGap = max(age) - min(age),
sex = first(sex))
c("Sex: Test:", table(tmp$sex))
c("Interval: Test:", mean(tmp$AgeGap[!tmp$AgeGap == 0]), sd(tmp$AgeGap[!tmp$AgeGap == 0]))
c("Age bsl: Test:", mean(tmp$AgeBsl), sd(tmp$AgeBsl),range(tmp$AgeBsl))
```
### Fig 1a. background plot for (theoretical expectations)
```{r Fig1a}
set.seed(1234)
n= 100000
CA = runif(n = n,
min = 0,
max = 90)
Delta = rnorm(n,
sd = 15)
df.plot = data.frame(CA,
Delta,
BA = CA + Delta)
# create hypothetical trajectories
df.plot.trajectories = data.frame(
CA = seq(0,90),
EL2 = c(seq(10,40, length.out = 20), seq(41,111)),
Other1 = c(seq(-1,39), seq(55,104)),
AC1 = c(seq(1:45), seq(46,115, length.out = 46))) %>%
pivot_longer(cols = -1, names_to = "I", values_to = "BA")
gs = ggplot(df.plot, aes(CA, BA)) +
#geom_density_2d_filled(bins = 100) +
#scale_fill_grey(start = 1,
# end = .2,
# na.value = "white") +
geom_segment(x = 25,
y = 25,
xend = 89,
yend = 89,
size = 3,
lineend = "round",
arrow=arrow(type = "closed"))+
geom_segment(x = 0,
y = 0,
xend = 89,
yend = 89,
size = 3,
linetype = 3)+
theme_classic() +
theme(legend.position = 'none',
axis.text = element_text(size = 16),
axis.title = element_text(size = 20)) +
scale_x_continuous(limits = c(-2,90),
expand = c(0,0),
breaks = seq(0,80,20),
name = "Chronological Age") +
scale_y_continuous(limits = c(0,120),
expand = c(0,0),
breaks = seq(0,100,20),
name = "Brain Age") +
geom_line(data = df.plot.trajectories,
mapping = aes(x = CA, y = BA, group = I, color = I),
size = 0,
arrow =arrow(type = "closed")) +
geom_line(data = df.plot.trajectories,
mapping = aes(x = CA, y = BA, group = I, color = I),
linetype = 2,
size = 2) +
scale_color_manual(values= c("#66a61e","#810f7c", '#e6ab02'))
# '#810f7c' purple
# "#66a61e" green
# #bdbdbd greyish
try(dir.create("figures"))
ggsave("figures/scheme_trajectories.png",
dpi = 500,
plot = gs,
width = 10,
height = 10,
units = "cm")
#810f7c# palette info
#https://colorbrewer2.org/#type=qualitative&scheme=Dark2&n6
```
### Fig 1b. Schematic representation of influences
```{r Fig1d}
## Purely for illustrative purposes!!!
# ilustrate aging
set.seed(123)
n = 5
AgeInt = rnorm(n,
sd = 2.5) + 50
AgeSlope = rnorm(n,
sd = .8) + 1
age = 57:68
df.aging = matrix(0,n,length(age))
for (i in 1:n) {
jj= 0
for (j in age) {
jj = jj + 1
if(AgeInt[i]>= j) {
df.aging[i,jj] = j
} else {
df.aging[i,jj] = AgeInt[i] + (j-AgeInt[i])*AgeSlope[i]
}
}
}
df.aging %<>% t() %>% as.data.frame()
df.aging = df.aging[,order(AgeSlope)]
names(df.aging) = c("id1", "id2", "id3", "id4", "id5")
df.aging$CA = age
df.aging %<>% pivot_longer(-CA, names_to = "eid", values_to = "BA")
colorscale <- c('#edf8fb','#ccece6','#99d8c9','#66c2a4','#2ca25f','#006d2c')
gs = ggplot(df.aging, aes(x = CA, y = BA, group = eid, color = eid, fill =eid)) +
geom_line(size = 0, linetype = 3, arrow =arrow(type = "closed")) +
geom_line(size = 1, linetype = 4) +
geom_line(data =df.aging %>% filter(CA %>% between(61,65)),
size = 2) +
geom_point(data =df.aging %>% filter(CA == 63),
size = 4, shape = 21, color = "black", stroke = 2) +
theme_classic() +
theme(legend.position = 'none',
axis.text = element_text(size = 14),
axis.title = element_text(size = 18),
axis.text.y = element_blank(),
axis.ticks.y = element_blank()) +
scale_color_manual(values =rev(colorscale)) +
scale_fill_manual(values =rev(colorscale)) +
scale_x_continuous(name = "Chronological Age", breaks = 63, labels = "old age") +
scale_y_continuous(name = "Brain Age")
ggsave("figures/aging_h0.png",
dpi = 500,
plot = gs,
width = 10,
height = 5,
units = "cm")
# ilustrate earkly life effects
colorscale = c('#edf8fb','#bfd3e6','#9ebcda','#8c96c6','#8856a7','#810f7c')
set.seed(123)
n = 5
BirthWeight = rnorm(n,
sd = 3)
AgeSlope = rnorm(n,
sd = .1) + BirthWeight*.4
AgeInt = rnorm(n,
sd = 2) + BirthWeight*2
AgeDevStop = rnorm(n,
sd =1) + 10
age = 0:25 ### remember - this is purely for illustrative purposes
df.earlylife = matrix(0,n,length(age))
for (i in 1:n) {
jj= 0
for (j in age) {
jj = jj + 1
if(AgeDevStop[i]>= j) {
df.earlylife[i,jj] = AgeInt[i] + j + j*AgeSlope[i]
} else {
df.earlylife[i,jj] = AgeInt[i] + j + AgeDevStop[i]*AgeSlope[i]
}
}
}
df.earlylife %<>% t() %>% as.data.frame()
df.earlylife = df.earlylife[,order(BirthWeight)]
names(df.earlylife) = c("id1", "id2", "id3", "id4", "id5")
df.earlylife$CA = age
df.earlylife %<>% pivot_longer(-CA, names_to = "eid", values_to = "BA")
gs = ggplot(df.earlylife,
aes(x = CA, y = BA, group = eid, color = eid, fill =eid)) +
geom_line(size = 0, linetype = 3, arrow =arrow(type = "closed")) +
geom_line(size = 1, linetype = 4) +
geom_line(data =df.earlylife %>% filter(CA %>% between(19,23)),
size = 2) +
geom_point(data =df.earlylife %>% filter(CA == 21),
size = 4, shape = 21, color = "black", stroke = 2) +
theme_classic() +
theme(legend.position = 'none',
axis.text = element_text(size = 14),
axis.title = element_text(size = 18),
axis.text.y = element_blank(),
axis.ticks.y = element_blank()) +
scale_color_manual(values =rev(colorscale)) +
scale_fill_manual(values =rev(colorscale)) +
scale_x_continuous(name = "Chronological Age", breaks = c(0,9,20), labels =c("birth", "development", "old age")) +
scale_y_continuous(name = "Brain Age")
ggsave("figures/earlylife_h0.png",
dpi = 500,
plot = gs,
width = 10,
height = 5,
units = "cm")
```
### Fig1c plot. UKB sample distribution
```{r Fig1c}
## plot train and dataset with age
gs = ggplot() +
geom_density(df.Train, mapping = aes(x = age, y = -..density..), fill="#66a61e", color="#66a61e", size =1.5, alpha =.8) +
geom_label( aes(x=80, y=-0.030, label="Training set"), color="#66a61e", size =4) +
geom_density(df.Test, mapping = aes(x = age, y = ..density..), fill="#1b9e77", color="#1b9e77", size =1.5, alpha =.8) +
geom_label( aes(x=80, y=0.030, label="Test set"), color="#1b9e77", size =4) +
geom_hline(yintercept = 0, color="#1b9e77", size = 1) +
theme_classic() +
theme(legend.position = 'none',
axis.text = element_text(size = 16),
axis.title = element_text(size = 20),
#axis.line.x = element_blank(),
axis.ticks.x = element_blank(),
axis.text.x = element_blank()) +
xlab("Chronological Age") +
ylab("Density") +
coord_flip() +
scale_x_continuous(expand = c(0,0))
try(dir.create("figures"))
ggsave("figures/sample_distribution.png",
dpi = 500,
plot = gs,
width = 10,
height = 10,
units = "cm")
```
### Fig1d plot. Age effects -GAM
```{r Fig1d}
## plot age effects on features
if(!file.exists(file.path(data_folder,"age.effects.Rda"))) {
gam.age = df.Train %>%
pivot_longer(T1w_vars,
names_to = "features",
values_to = "value") %>%
group_by(features) %>%
do(fit = gam(value ~ s(age), data = ., method = 'REML'))
df.age = data.frame(
feature =gam.age$features,
r.sq = sapply(gam.age$fit, function(x) summary(x)$r.sq) %>%
simplify2array())
df.Harmonize = read.csv("data/Harmonize.csv", stringsAsFactors = F) %>%
mutate(feature = UKB,
modality = as.factor(Stats_file)) %>%
select(feature, modality)
df.age = left_join(df.age,df.Harmonize)
tmp =df.age %>%
group_by(modality) %>%
summarise(r.sq =mean(r.sq)) %>%
mutate(order = -rank(r.sq)) %>%
select(-r.sq)
df.age = left_join(df.age, tmp) %>%
arrange(order, -r.sq) %>%
mutate(order2 = 1:length(T1w_vars))
df.age$modality =
plyr::mapvalues(df.age$modality,
from =c("Area_Aparc","GWC_Aparc","Intensity_Aseg","Thickness_Aparc","Volume_Aseg","Volume_Aparc"),
to = c("area (c)", "gwc (c)","intensity (s)","thickness (c)", "volume (s)", "volume (c)"))
save(gam.age, df.age, file = file.path(data_folder,"age.effects.Rda"))
} else {
load(file = file.path(data_folder,"age.effects.Rda"))
}
write.csv(df.age, file = "figures/age_effects_UKB.csv")
colorscale =c('#1b9e77','#d95f02','#7570b3','#e7298a','#66a61e','#e6ab02')
gs = ggplot(df.age, aes(x = order2, y = r.sq, group = modality, fill = modality)) +
geom_point(shape = 21, size = 3) +
theme_classic() +
theme(legend.position = c(.7,.8),
axis.text = element_text(size = 16),
axis.title = element_text(size = 20),
axis.text.x = element_blank(),
axis.ticks.x = element_blank(),
legend.title = element_blank(),
legend.text = element_text(size = 16),
legend.key.size = unit(5,"point")) +
xlab("Feature") +
ylab(bquote('Age Variance (r' ^2*')' )) +
scale_fill_manual(values = colorscale)
try(dir.create("figures"))
ggsave("figures/age_relationship.png",
dpi = 500,
plot = gs,
width = 10,
height = 10,
units = "cm")
```
# ML - model creation. Use all variables
## Select Train and Test
Separate train and test data. That is separate longitudinal and cross-sectional data
```{r train and test data. all vars}
# get data and label for test and train data
data.train = df.Train[, T1w_vars] %>% as.matrix()
label.train = df.Train$age %>% as.matrix()
train.id = df.Train$eid %>% as.matrix()
data.test = df.Test[, T1w_vars] %>% as.matrix() %>% as.matrix()
label.test = df.Test$age %>% as.matrix()
label.id = df.Test$eid %>% as.matrix()
# create xgb matrices
dtrain <- xgb.DMatrix(data = data.train,label = label.train)
dtest <- xgb.DMatrix(data = data.test,label=label.test)
```
## Explore hyperparameter spaces with cross-validation
At the moment, moving forward with default parameters.
```{r Hyper_parameter_search, eval=F, echo=T}
set.seed(1234)
it=50
if(!file.exists(file.path(data_folder,"RandomHyperParameterSearchCV.Rda"))) {
# it might take some minutes
# set up the cross-validated hyper-parameter search
xgb_grid_1 = expand.grid(
nrounds = seq(100, 600,50),
eta = c(.01, .05, .1, .15, .2),
max_depth = seq(2, 8,1),
gamma = seq(0.5,1.5,0.5),
min_child_weight=seq(1,4),
rmse =NaN,
Nrmse=NaN,
train=NaN,
idx=NaN
)
save(xgb_grid_1, file = file.path(data_folder,"RandomHyperParameterSearchCV.Rda"))
} else {
load(file.path(data_folder,"RandomHyperParameterSearchCV.Rda"))
}
idx = sample(dim(xgb_grid_1)[1],it)
ii = which(!(1:it %in% xgb_grid_1$idx))
# parameters
for (i in ii) {
print(i)
eta = xgb_grid_1$eta[idx[i]]
max_depth=xgb_grid_1$max_depth[idx[i]]
gamma = xgb_grid_1$gamma[idx[i]]
min_child_weight = xgb_grid_1$min_child_weight[idx[i]]
nrounds = xgb_grid_1$nrounds[idx[i]]
(system(paste("sbatch scripts/BrainAge/RandomHyperParameterSearchCV.sh",
eta,
max_depth,
gamma,
min_child_weight,
nrounds,
i,
idx[i],
data_folder,
sep = " ")))
Sys.sleep(5)
}
df.squeue = squeue("p274-didacvp","HyperParameterSearch")
while (length(df.squeue$V1) > 1) {
Sys.sleep(120)
print("script running on sbatch")
df.squeue = squeue("p274-didacvp","HyperParameterSearch")
}
# reload
load(file.path(data_folder,"RandomHyperParameterSearchCV.Rda"))
ii = which(!(1:it %in% xgb_grid_1$idx))
if(is_empty(ii)) {
xgb_grid_1 = xgb_grid_1 %>% filter(!is.na(rmse))
save(xgb_grid_1, file = "data/RandomHyperParameterSearchCV.Rda")
} else {
disp("something wrong with randomized search")
}
xgb_grid_1 %>% arrange(rmse) %>% head()
```
### Apply Crossvalidation
Strictly not necessary,
a) saved for diagnostic statistics and fig 1c
```{r xgboost cv}
if(!file.exists(file.path(data_folder, "xgbcv.CV.Rda"))) {
eta = xgb_grid_1[which.min(xgb_grid_1$rmse),"eta"]
max_depth=xgb_grid_1[which.min(xgb_grid_1$rmse),"max_depth"]
gamma = xgb_grid_1[which.min(xgb_grid_1$rmse),"gamma"]
min_child_weight = xgb_grid_1[which.min(xgb_grid_1$rmse),"min_child_weight"]
nrounds = xgb_grid_1[which.min(xgb_grid_1$rmse),"nrounds"]
(system(paste("sbatch scripts/BrainAge/BrainAgeCV.sh",
eta,
max_depth,
gamma,
min_child_weight,
nrounds,
data_folder,
sep = " ")))
df.squeue = squeue("p274-didacvp","BrainAgeCV")
while (length(df.squeue$V1) > 1) {
Sys.sleep(120)
print("script running on sbatch")
df.squeue = squeue("p274-didacvp","BrainAgeCV")
}
}
load(file.path(data_folder, "xgbcv.CV.Rda"))
min_rmse = min(xgbcv$evaluation_log$test_rmse_mean)
min_rmse_nround = which.min(xgbcv$evaluation_log$test_rmse_mean)
print(paste("min rmse", round(min_rmse,3), "at round n", min_rmse_nround))
```
# Plotting and predicting
```{r xgboost cv plotts and summary stats}
df.out = data.frame(
eid = df.Train$eid,
BA = xgbcv$pred,
Age = label.train,
sex = df.Train$sex,
Center.Reading = df.Train$Center.Reading,
Center.Newcastle = df.Train$Center.Newcastle,
eiCV = df.Train$eICV)
lm.Age = lm(BA ~ Age, data = df.out)
summary(lm.Age)
cor.test(df.out$BA, df.out$Age)
err <- mean(abs(df.out$BA - df.out$Age))
rmse = sqrt(sum((df.out$BA - df.out$Age)^2) / length(df.out$BA))
age.bias <- cor.test(df.out$Age, (df.out$BA - df.out$Age))$estimate
print(paste("mean absolute error (MAE)=", round(err,2)))
print(paste("root mean square error=",round(rmse,2)))
print(paste("r-sq =", round(summary(lm.Age)$r.squared, 2)))
print(paste("age.bias =", age.bias))
```
### Plot for Fig 1e
```{r plot CA vs BA}
# Fig 1c (trainging data)
#print("plot BA vs CA. Note expect age.bias")
gs = ggplot(data = df.out,
mapping = aes(x = Age,
y = BA)) +
geom_pointdensity(adjust = 2) +
geom_abline(intercept = 0,
slope = 1,
colour = "grey60",
linetype = 4,
size = 1.5) +
geom_smooth(method = "lm",
color = "#1b9e77",
size = 1.5) +
geom_smooth(color = "#d95f02",
size = 1.5) +
geom_label( aes(x=50, y=80, label="Training set"), color="#66a61e", size =4) +
theme_classic() +
theme(legend.position = 'none',
axis.text = element_text(size = 16),
axis.title = element_text(size = 20)) +
scale_color_viridis_c() +
ylab("Brain Age") +
xlab("Chronological Age")
ggsave("figures/TrainXGV.png",
dpi = 500,
plot = gs,
width = 10,
height = 10,
units = "cm")
```
### Correct BA vs CA Bias
correct BA Bias using gam and linear coefficients
```{r Bias Correction}
sm.rel = gam(BA ~ s(Age, k = 8), data = df.out)
df.out %<>%
mutate(BAG = BA - Age,
ExpAge = lm.Age$coefficients[[1]] + Age*lm.Age$coefficients[[2]],
BAG_corr = BA - ExpAge,
BAG_corr_gam = sm.rel$residuals)
# ggpairs(df.out %>%
# select(BA,
# Age,
# BAG,
# ExpAge,
# BAG_corr,
# BAG_corr_gam),
# progress = F)
# note strong relationship between Age and BrainAge gap.
# note that linear and gam-based bias reductions are almost equivalent
```
## Explore effects BAG in variables that should not be related to BAG
```{r Sex Scan Biases, echo =T}
print(df.out %>% group_by(sex) %>%
summarise_at(c("Age", "BA", "BAG", "BAG_corr", "BAG_corr_gam"), funs(mean, sd)))
print(df.out %>% group_by(Center.Reading) %>%
summarise_at(c("Age", "BA", "BAG", "BAG_corr", "BAG_corr_gam"), funs(mean, sd)))
print(df.out %>% group_by(Center.Newcastle) %>%
summarise_at(c("Age", "BA", "BAG", "BAG_corr", "BAG_corr_gam"), funs(mean, sd)))
print(df.out %>% summarise_at(c("Age", "BA", "BAG", "BAG_corr", "BAG_corr_gam"), funs(cor(.,eiCV))))
```
## Predict test data with same parameters as above
```{r xgboost with full train data}
if(!file.exists(file.path(data_folder, "xgbcv.full.Rda"))) {
eta = xgb_grid_1[which.min(xgb_grid_1$rmse),"eta"]
max_depth=xgb_grid_1[which.min(xgb_grid_1$rmse),"max_depth"]
gamma = xgb_grid_1[which.min(xgb_grid_1$rmse),"gamma"]
min_child_weight = xgb_grid_1[which.min(xgb_grid_1$rmse),"min_child_weight"]
nrounds = xgb_grid_1[which.min(xgb_grid_1$rmse),"nrounds"]
(system(paste("sbatch scripts/BrainAge/BrainAgeFull.sh",
eta,
max_depth,
gamma,
min_child_weight,
nrounds,
data_folder,
sep = " ")))
df.squeue = squeue("p274-didacvp","BrainAgeFull")
while (length(df.squeue$V1) > 1) {
Sys.sleep(120)
print("script running on sbatch")
df.squeue = squeue("p274-didacvp","BrainAgeFull")
}
}
load(file.path(data_folder, "xgbcv.full.Rda"))
pred <- predict(bst, data.test)
#view variable importance plot
xgb.dump(bst, with_stats = TRUE, file.path(data_folder,'bst.model.dump.txt'))
mat <- xgb.importance (feature_names = T1w_vars,model = bst)
xgb.plot.importance (importance_matrix = mat, top = 15, rel_to_first = T, left_margin = 15)
xgb.ggplot.deepness(bst)
suppressMessages(xgb.plot.multi.trees(bst, fill = T))
```
## Fig 1e & summarize prediction results
```{r test data info}
df.pred = data.frame(
eid = label.id,
BA = pred,
Age = label.test,
wave = df.Test$wave,
sex = df.Test$sex,
Center.Reading = df.Test$Center.Reading,
Center.Newcastle = df.Test$Center.Newcastle,
eiCV = df.Test$eICV)
gs = ggplot(data = df.pred,
mapping = aes(x = Age,
y = BA)) +
geom_line(mapping = aes(group = eid), size = .3, color = "grey50") +
geom_pointdensity(adjust = 4) +
geom_abline(intercept = 0,
slope = 1,
colour = "grey60",
linetype = 4,
size = 1.5) +
geom_smooth(method = "lm",
color = "#1b9e77",
size = 1.5) +
geom_smooth(color = "#d95f02",
size = 1.5) +
geom_label( aes(x=50, y=80, label="Test set"), color="#1b9e77", size =4) +
theme_classic() +
theme(legend.position = 'none',
axis.text = element_text(size = 16),
axis.title = element_text(size = 20)) +
scale_color_viridis_c() +
ylab("Brain Age") +
xlab("Chronological Age")
ggsave("figures/TestXGV.png",
dpi = 500,
plot = gs,
width = 10,
height = 10,
units = "cm")
```
## Summarized model info.
```{r get brain age stats}
lm.Age = lm(BA ~ Age, data = df.pred)
summary(lm.Age)
cor.test(df.pred$BA, df.pred$Age)
err <- mean(abs(pred - label.test))
rmse = sqrt(sum((pred - label.test)^2) / length(pred))
age.bias <- cor.test(df.pred$Age, (df.pred$BA - df.pred$Age))$estimate
print(paste("mean absolute error (MAE)=", round(err,2)))
print(paste("root mean square error=",round(rmse,2)))
print(paste("r-sq =", round(summary(lm.Age)$r.squared, 2)))
print(paste("age.bias =", age.bias))
```
## And correct age bias
```{r}
sm.rel_pred = gam(BA ~ s(Age, k = 8), data = df.pred)
sm.rel = gam(BA ~ s(Age, k = 8), data = df.out)
lm.Age2 = lm(BA ~ poly(Age,2, raw = T), data = df.out)
lm.Age = lm(BA ~ poly(Age,2, raw = T), data = df.out)
df.pred %<>%
mutate(BAG = BA - Age,
ExpAge = lm.Age$coefficients[[1]] + Age*lm.Age$coefficients[[2]],
ExpAge2 = lm.Age2$coefficients[[1]] + Age*lm.Age2$coefficients[[2]] + Age^2*lm.Age2$coefficients[[3]],
BAG_corr = BA - ExpAge,
BAG_corr2 = BA - ExpAge2,
BAG_corr_gam = BA - predict(sm.rel, df.pred))
# ggpairs(df.pred %>%
# select(BA,
# Age,
# BAG,
# ExpAge,
# BAG_corr,
# BAG_corr2,
# BAG_corr_gam),
# progress = F)
# we use gaage-bias correction using the cross-validated model so we do not enforce a dependency on test data
# note that results are almost equivalent as when using the cross-validated approach
plot(df.pred$BAG_corr_gam, sm.rel_pred$residuals)
cor(df.pred$BAG_corr_gam, sm.rel_pred$residuals)
```
## Explore effects BAG in variables that should not be related to BAG (Test Data)
```{r Sex_Scan_Biases_Pred}
Sys.sleep(1)
print(df.pred %>% group_by(sex) %>%
summarise_at(c("Age", "BA", "BAG", "BAG_corr", "BAG_corr_gam"), funs(mean, sd)))
print(df.pred %>% group_by(Center.Reading) %>%
summarise_at(c("Age", "BA", "BAG", "BAG_corr", "BAG_corr_gam"), funs(mean, sd)))
print(df.pred %>% group_by(Center.Newcastle) %>%
summarise_at(c("Age", "BA", "BAG", "BAG_corr", "BAG_corr_gam"), funs(mean, sd)))
print(df.pred %>% summarise_at(c("Age", "BA", "BAG", "BAG_corr", "BAG_corr_gam"), funs(cor(.,eiCV))))
```
### tp1 tp2 independently
process tp1 tp2 independently. so no need of applying corrections
```{r xgb tp1 tp2}
if(!file.exists(file.path(data_folder, "xgbcv.tp.ind.Rda"))) {
load(file.path(data_folder,"RandomHyperParameterSearchCV.Rda"))
data.test.tp1 = df.Test[df.Test$wave==1, T1w_vars] %>% as.matrix() %>% as.matrix()
data.test.tp2 = df.Test[df.Test$wave==2, T1w_vars] %>% as.matrix() %>% as.matrix()
label.test.tp1 = df.Test %>% filter(wave == 1) %>% .$age %>% as.matrix()
label.test.tp2 = df.Test %>% filter(wave == 2) %>% .$age %>% as.matrix()
eta = xgb_grid_1[which.min(xgb_grid_1$rmse),"eta"]
max_depth=xgb_grid_1[which.min(xgb_grid_1$rmse),"max_depth"]
gamma = xgb_grid_1[which.min(xgb_grid_1$rmse),"gamma"]
min_child_weight = xgb_grid_1[which.min(xgb_grid_1$rmse),"min_child_weight"]
nrounds = xgb_grid_1[which.min(xgb_grid_1$rmse),"nrounds"]
nfold = 10
params = list(booster = "gbtree",
objective = "reg:squarederror",
eta = eta,
max_depth=max_depth,
gamma = gamma,
min_child_weight = min_child_weight)
xgbcv.tp1 <- xgb.cv( params = params,
data = data.test.tp1,
label = label.test.tp1,
nrounds = nrounds,
nfold = nfold,
showsd = T,
stratified = T,
print_every_n = 10,
early_stop_round = 10,
maximize = F,
prediction = T)
min_rmse = min(xgbcv.tp1$evaluation_log$test_rmse_mean)
min_rmse_nround = which.min(xgbcv.tp1$evaluation_log$test_rmse_mean)
print(paste("min rmse", round(min_rmse,3), "at round n", min_rmse_nround))
tmp1 = data.frame(
eid = df.Test %>% filter(wave == 1) %>% .$eid,
BA_tp = xgbcv.tp1$pred,
age = df.Test %>% filter(wave == 1) %>% .$age,
wave = 1)
xgbcv.tp2 <- xgb.cv( params = params,
data = data.test.tp2,
label = label.test.tp2,
nrounds = nrounds,
nfold = nfold,
showsd = T,
stratified = T,
print_every_n = 10,
early_stop_round = 10,
maximize = F,
prediction = T)
min_rmse = min(xgbcv.tp2$evaluation_log$test_rmse_mean)
min_rmse_nround = which.min(xgbcv.tp2$evaluation_log$test_rmse_mean)
print(paste("min rmse", round(min_rmse,3), "at round n", min_rmse_nround))
tmp2 = data.frame(
eid = df.Test %>% filter(wave == 2) %>% .$eid,
BA_tp = xgbcv.tp2$pred,
age = df.Test %>% filter(wave == 2) %>% .$age,
wave = 2)
db.out.tp = rbind(tmp1,tmp2) %>%
mutate(BAG_tp = BA_tp - age)
save(db.out.tp, file = file.path(data_folder, "xgbcv.tp.ind.Rda"))
} else {
load(file.path(data_folder, "xgbcv.tp.ind.Rda"))
}
```
### saving results
merge data.frame and save results
```{r Saving and Knitting}
# vars to joing
vars = c("eid",
"BA",
"BAG",
"ExpAge",
"BAG_corr",
"BAG_corr_gam")
df.Train =
left_join(df.Train,
df.out %>% select(vars))
df.Test =
left_join(df.Test,
df.pred %>% select(vars, "wave"))
df.Test =
left_join(df.Test,
db.out.tp %>% select(eid, wave, BA_tp, BAG_tp))
save(df.Test, df.Train, file = file.path(data_folder, "ResultsBrainAge_XGB.Rda"))
```
# LASSO prediction
Routine implemented as in Cole 2020. Modifications kept to the minumun to ensure as much consistency as possible with Cole 2020
## Designate subset as training and validation/model testing
```{r redefine train and test data}
train_data = df.Train[, T1w_vars] %>% as.matrix()
train_labels = df.Train$age %>% as.matrix()
test_data = df.Test[, T1w_vars] %>% as.matrix() %>% as.matrix()
test_labels = df.Test$age %>% as.matrix()
label.id = df.Test$eid %>% as.matrix()
```
### Scale variables.
This is essential for ANN and probably a good idea for all the models.
```{r scale cole2020}
# already done for kept for consistency with Cole 2020 flow
scaled.train_data <- scale(train_data, scale = TRUE, center = TRUE)
scaling.parameters.center <- attr(scaled.train_data, "scaled:center")
scaling.parameters.scale <- attr(scaled.train_data, "scaled:scale")
scaled.test_data <- as.data.frame(scale(test_data, scaling.parameters.center, scaling.parameters.scale))
scaled.train_data <- as.data.frame(scaled.train_data)
```
### Functions to output accuracy metrics and plot age by predicted age.
Take predicted age values as input.
```{r functionscole2020}
test_results <- function(pred) {
r <- cor.test(test_labels, pred)$estimate
r.sq <- summary(lm(test_labels ~ pred))$r.squared
MAE <- mean(abs(pred - test_labels), na.rm = T)
rmse = sqrt(sum((pred - test_labels)^2) / length(pred))
age.bias <- cor.test(test_labels, (pred - test_labels))$estimate
value <- sapply(c(r,r.sq, MAE, age.bias, rmse), function(x) round(x, 3))
results <- cbind(c("r", "R^2", "MAE", "Age.bias", "rmse"), value)
return(kable(results) %>% kable_styling(bootstrap_options = c("striped","condensed", "responsive", full_width = F, position = "centre")))
}
age_plot <- function(pred) {
ggplot() +
geom_abline(slope = 1, intercept = 0) +
geom_point(aes(x = test_labels, y = pred), shape = 21, bg = "darkgoldenrod2", size = 2) +
geom_smooth(aes(x = test_labels, y = pred), method = "lm", col = "darkgrey") +
labs(title = deparse(substitute(pred)), x = "Age (years)", y = "Brain-predicted age (years)") +
theme_cowplot()
}
```
### LASSO regression
Using the glmnet package. Alpha = 1 is for LASSO penalisation (0 = ridge, 0.5 = elastic net).
```{r lasso reg}
x.train <- as.matrix(scaled.train_data)
dimnames(x.train) <- NULL
y.train <- as.matrix(train_labels)
## cross-validation for lambda
set.seed(1234)
lasso.fit.cv <- cv.glmnet(x = x.train, y = y.train,
alpha = 1, family = "gaussian")
```
Plot results.
```{r lassofitplot1}
plot(lasso.fit.cv)
```
### LASSO model performance on validation data
Fit model using previously optimised (through CV) lambda value (1 SE value, not minimum).
```{r lasso val}
lasso.fit <- glmnet(x = x.train, y = y.train,
alpha = 1, family = "gaussian", lambda = lasso.fit.cv$lambda.1se)
lasso.pred <- predict(lasso.fit, newx = as.matrix(scaled.test_data))
test_results(lasso.pred)
```
```{r}
age_plot(lasso.pred)
ggsave(file.path("figures","LASSO_brain_age_scatterplot.pdf"), useDingbats = FALSE, dpi = 75, height = 4, width = 4)
```
### Variable weightings and feature selection results
```{r wieghting and selecting cole 2020}
LASSO.coefficient <- coef(lasso.fit, s = lasso.fit.cv$lambda.1se)[-1]
var.coefs <- data.frame(T1w_vars, LASSO.coefficient)
non.zero_vars <- subset(var.coefs, var.coefs$LASSO.coefficient != 0)
non.zero_vars$T1w_vars.list <- factor(non.zero_vars$T1w_vars)
```
Out of the original `r dim(var.coefs)[1]` variables, the LASSO regression set `r length(non.zero_vars$imaging.vars.list)` to non-zero, thus `r dim(var.coefs)[1] - length(non.zero_vars$imaging.vars.list)` variables were removed.
### Bootstrap LASSO
Bootstrap 95% confidence intervals. Uses the boot package.
#### Function to obtain LASSO regression coefficients
Essential to convert coefficients to vector that stores zeros.
```{r funcions2 cole2020}
lasso.coef <- function(data, indices) {
d <- data[indices,]
fit <- glmnet(x = d[,-1], y = d[,1],
alpha = 1, family = "gaussian", lambda = lasso.fit.cv$lambda.1se)
return(coef(fit)[,1])
}
```
#### Run bootstrap with n replications
Normal printing and plotting of results doesn't work for high-dimensional datasets.
Load data file if it already exists.
```{r boostrap cole 2020}
if (file.exists(file.path(data_folder, "lasso.boot.out.rda"))) {
load(file.path(data_folder, "lasso.boot.out.rda"))
cat("loading existing bootstrap file")
} else {
cat("running bootstraps")
boot.out <- boot(data = cbind(y.train, x.train), statistic = lasso.coef, R = 1000)
save(boot.out, file = file.path(data_folder, "lasso.boot.out.rda"))
}
```
There were `r table(boot.out$t0[-1] > 0 | boot.out$t0[-1] < 0)[2]` non-zero coefficients.
Check histogram of bootstrap coefficients for top variable by way of example.
```{r}
ggplot() +
geom_histogram(bins = 100, aes(boot.out$t[,which.max(abs(boot.out$t0[-1])) + 1]),
fill = "darkgoldenrod2",
colour = "black",
lwd = 0.25) +
xlab("Top variable bootstrapped coefficients") +
theme_cowplot()
```
#### Function for getting CIs from vector
```{r functions3 cole 2020}
ci.vector <- function(index, boot.object, ci.type) {
x <- boot.ci(boot.object, type = ci.type, index = index)
return(x[4])
}
```
Use my ci.vector() function (defined above) to derive confidence intervals.
```{r message=FALSE, warning=FALSE, paged.print=FALSE}
n <- length(boot.out$t0)
boot.ci.out <- sapply(1:n, ci.vector, boot.object = boot.out, ci.type = "basic")
x <- boot.out$t0[1:n]
y <- data.frame(t(matrix(unlist(boot.ci.out), ncol = n)))[4:5]
ci.df <- cbind(x, y)
names(ci.df) <- c("coef", "l.ci", "u.ci")
```
Identify variables with confidence intervals that do not overlap zero.
```{r idvar not 0 cole 2020 paged.print=FALSE}
# drop intercept from plot using [-1] in vector ci.df$l.ci and ci.df$u.ci (i.e., the intercept is the top row)
sig.vars.index <- which(ci.df$l.ci[-1] > 0 | ci.df$u.ci[-1] < 0)
sig.vars.list <- T1w_vars[sig.vars.index]
sig.vars.df <- ci.df[sig.vars.index + 1,] ## add 1 to omit intercept row
sig.vars.df <- cbind(sig.vars.list, round(sig.vars.df,3))
kable(sig.vars.df[order(abs(sig.vars.df$coef), decreasing = T),]) %>% kable_styling(bootstrap_options = c("striped","condensed", "responsive", full_width = F, position = "centre"), fixed_thead = list(enabled = T, background = "lightgrey"))
```
```{r warning=FALSE}
## sort dataset by coefficient
ci.df2 <- ci.df[order(ci.df$coef, decreasing = T),]
# drop intercept from plot using [-1,] in data.frame ci.df (i.e., the intercept is the top row)
plot(ci.df2[-1,1], ylim = c(min(ci.df2[-1,2]), max(ci.df2[-1,3])),
pch = 20, col = "darkgoldenrod2", ylab = "LASSO coefficient") +
arrows(x0 = 1:(n - 1), y0 = ci.df2[-1,2], y1 = ci.df2[-1,3],
length = 0.02, angle = 90, code = 3, col = "grey") +
abline(h = 0, type = 2)
```
### Run model with only significant variables
#### Top variables OLS
```{r topOls predict cole 2020}
top.ols <- lm(train_labels ~ .,
data = scaled.train_data[,sig.vars.index])
top.ols.pred <- predict(object = top.ols, newdata = scaled.test_data[,sig.vars.index])
test_results(top.ols.pred)
```
```{r}
age_plot(top.ols.pred)
```
#### Top variables LASSO
```{r top lasso cole 2020}
## fit model using optimal lambda value (1 SE value, not minimum)
set.seed(1234)
top.lasso.fit <- glmnet(x = x.train[,sig.vars.index], y = y.train,
alpha = 1, family = "gaussian", lambda = lasso.fit.cv$lambda.1se)
top.lasso.pred <- predict(top.lasso.fit, newx = as.matrix(scaled.test_data[,sig.vars.index]))
test_results(top.lasso.pred)
## get data on train data for age-bias corection of longitudinal data.
top.lasso.train <- predict(top.lasso.fit, newx = as.matrix(scaled.train_data[,sig.vars.index]))
r <- cor.test(train_labels, top.lasso.train)$estimate
r.sq <- summary(lm(train_labels ~ top.lasso.train))$r.squared
MAE <- mean(abs(top.lasso.train - train_labels), na.rm = T)
rmse = sqrt(sum((top.lasso.train - train_labels)^2) / length(top.lasso.train))
age.bias <- cor.test(train_labels, (top.lasso.train - train_labels))$estimate
value <- sapply(c(r,r.sq, MAE, age.bias, rmse), function(x) round(x, 3))
results <- cbind(c("r", "R^2", "MAE", "Age.bias", "rmse"), value)
kable(results) %>% kable_styling(bootstrap_options = c("striped","condensed", "responsive", full_width = F, position = "centre"))
```
### Correct for age bias and save
Calculate age bias in initial test data.
```{r LASSO PRED df}
df.pred = data.frame(
eid = label.id,
LASSO.BA = top.lasso.pred %>% as.numeric(),
Age = test_labels,
wave = df.Test$wave)
df.lasso.out = data.frame(
eid = train.id,
Age = train_labels,
LASSO.BA = top.lasso.train %>% as.numeric())
sm.rel = gam(LASSO.BA ~ s(Age, k = 8), data = df.lasso.out)
lm.Age = lm(LASSO.BA ~ Age, data = df.lasso.out)
lm.Age2 = lm(LASSO.BA ~ poly(Age,2, raw = T), data = df.lasso.out)
df.lasso.out %<>%
mutate(LASSO.BAG = LASSO.BA - Age,
LASSO.BAG_corr_gam = sm.rel$residuals)
df.pred %<>%
mutate(LASSO.BAG = LASSO.BA - Age,
ExpAge = lm.Age$coefficients[[1]] + Age*lm.Age$coefficients[[2]],
ExpAge2 = lm.Age2$coefficients[[1]] + Age*lm.Age2$coefficients[[2]] + Age^2*lm.Age2$coefficients[[3]],
LASSO.BAG_corr = LASSO.BA - ExpAge,
LASSO.BAG_corr2 = LASSO.BA - ExpAge2,
LASSO.BAG_corr_gam = LASSO.BA - predict(sm.rel, df.pred))
# ggpairs(df.pred %>%
# select(LASSO.BA,
# Age,
# LASSO.BAG,
# ExpAge,
# LASSO.BAG_corr,
# LASSO.BAG_corr2,
# LASSO.BAG_corr_gam),
# progress = F)
gs = ggplot(data = df.pred,
mapping = aes(x = Age,
y = LASSO.BA)) +
geom_line(mapping = aes(group = eid), size = .3, color = "grey50") +
geom_pointdensity(adjust = 4) +
geom_abline(intercept = 0,
slope = 1,
colour = "grey60",
linetype = 4,
size = 1.5) +
geom_smooth(method = "lm",
color = "#1b9e77",
size = 1.5) +
geom_smooth(color = "#d95f02",
size = 1.5) +
theme_classic() +
theme(legend.position = 'none',
axis.text = element_text(size = 16),
axis.title = element_text(size = 20)) +
scale_color_viridis_c() +
ylab("Brain Age") +
xlab("Chronological Age")
ggsave("figures/TestLASSO.png",
dpi = 500,
plot = gs,
width = 10,
height = 10,
units = "cm")
# vars to joing
vars = c("eid",
"LASSO.BA",
"LASSO.BAG",
"LASSO.BAG_corr_gam")
df.Test =
left_join(df.Test,
df.pred %>% select(vars, "wave"))
df.Train =
left_join(df.Train,
df.lasso.out %>% select(vars))
save(df.Test, df.Train, T1w_vars, file = file.path(data_folder, "ResultsBrainAge_XGB_LASSO.Rda"))
```
## scaling
```{r scaling}
## apply scaling according to Smith 2.8 formula in Smith Neuroimage 2019.
load(file.path(data_folder, "ResultsBrainAge_XGB_LASSO.Rda"))
set = c(rep("Test", length(df.Test$BAG_corr_gam)),
rep("Train", length(df.Train$BAG_corr_gam)))
delta = c(df.Test$BAG_corr_gam,df.Train$BAG_corr_gam)
age = c(df.Test$age,df.Train$age)
# Y0
scaled_age = ((age - min(age)) / (max(age) - min (age)))
# eq.18 (log(|delta|)) = D0 + lambda*scaled_aged
mod = lm(log(abs(delta)) ~ scaled_age)
summary(mod)
# lambda = exp(lambda) - 1
lambda = exp(coef(mod)[["scaled_age"]])-1
mean(abs(delta))*lambda
# eq.17 delta = delta0(1 + lamda*scaled_age)
delta_0_XGB <- delta / (1 + lambda * scaled_age)
par(mfrow=c(1,3))
plot(age, delta)
plot(age, delta_0_XGB)
plot(delta, delta_0_XGB)
# same for LASSO
delta = c(df.Test$LASSO.BAG_corr_gam,df.Train$LASSO.BAG_corr_gam)
mod = lm(log(abs(delta)) ~ scaled_age)
summary(mod)
# lambda = exp(lambda) - 1
lambda = exp(coef(mod)[["scaled_age"]])-1
mean(abs(delta))*lambda
# eq.17 delta = delta0(1 + lamda*scaled_age)
delta_0_LASSO <- delta / (1 + lambda * scaled_age)
par(mfrow=c(1,3))
plot(age, delta)
plot(age, delta_0_LASSO)
plot(delta, delta_0_LASSO)
df.Test$delta_0_XGB = delta_0_XGB[set == "Test"]
df.Train$delta_0_XGB = delta_0_XGB[set == "Train"]
df.Test$delta_0_LASSO = delta_0_LASSO[set == "Test"]
df.Train$delta_0_LASSO = delta_0_LASSO[set == "Train"]
df.Test$BAG_tp0 <- df.Test$BAG_tp / (1 + lambda * scaled_age[set == "Test"])
save(df.Test,
df.Train,
file = file.path(data_folder, "ResultsBrainAge_XGB_LASSO.Rda"))
```