session.py
import os
import warnings
import tensorflow as tf
from tensorflow.python.client import timeline
from ._settings import settings
class TracerSession(tf.Session):
def __init__(self, output_file_name, output_directory, each_time, **kwargs):
self.output_file_name = output_file_name
self.output_directory = output_directory
self.eachTime = each_time
self.local_run_metadata = None
if self.eachTime:
warnings.warn("Outputting a trace for each run. May result in large disk usage.")
super(TracerSession, self).__init__(**kwargs)
self.counter = 0
self.profiler_options = tf.RunOptions(trace_level=tf.RunOptions.FULL_TRACE)
if self.output_directory is not None:
if os.path.isfile(self.output_directory):
raise IOError("In tracer: given directory name is a file.")
if not (os.path.isdir(self.output_directory)):
os.mkdir(self.output_directory)
def get_filename(self):
dir_stub = self.output_directory if self.output_directory is not None else ''
if self.eachTime:
return os.path.join(dir_stub, self.output_file_name + '_' + str(self.counter) + '.json')
else:
return os.path.join(dir_stub, self.output_file_name + '.json')
def run(self, fetches, feed_dict=None, options=None):
# Make sure there is no disagreement doing this.
if options is not None:
if options.trace_level != self.profiler_options.trace_level: # pragma: no cover
raise ValueError('In profiler session. Inconsistent trace level from run call') # pragma: no cover
self.profiler_options.update(options) # pragma: no cover
self.local_run_metadata = tf.RunMetadata()
output = super(TracerSession, self).run(fetches, feed_dict=feed_dict, options=self.profiler_options,
run_metadata=self.local_run_metadata)
tl = timeline.Timeline(self.local_run_metadata.step_stats)
ctf = tl.generate_chrome_trace_format()
with open(self.get_filename(), 'w') as f:
f.write(ctf)
if self.eachTime:
self.counter += 1
return output
def get_session(*args, **kwargs):
# Pass session configuration options
if('config' not in kwargs):
kwargs['config'] = tf.ConfigProto(**settings.session)
if settings.profiling.dump_timeline:
return TracerSession(*args, **kwargs)
else:
kwargs.pop("output_file_name", None)
kwargs.pop("output_directory", None)
kwargs.pop("each_time", None)
return tf.Session(*args, **kwargs)