if(dev.cur() <= 1) { dd <- getOption("device") if(is.character(dd)) dd <- get(dd) dd() } oldpar <- par(ask = interactive() && dev.interactive(orNone=TRUE)) oldoptions <- options(warn=-1) fanfare <- function(stuff) { plot(c(0,1),c(0,1),type="n",axes=FALSE, xlab="", ylab="") text(0.5,0.5, stuff, cex=2.5) } fanfare("Spatstat demonstration") fanfare("I. Types of data") data(swedishpines) plot(swedishpines, main="Point pattern") data(demopat) plot(demopat, cols=c("green", "blue"), main="Multitype point pattern") data(longleaf) plot(longleaf, fg="blue", main="Marked point pattern") a <- psp(runif(20),runif(20),runif(20),runif(20), window=owin()) plot(a, main="Line segment pattern") plot(owin(), main="Rectangular window") data(letterR) plot(letterR, main="Polygonal window") plot(as.mask(letterR), main="Binary mask window") Z <- as.im(function(x,y){ sqrt((x - 1)^2 + (y-1)^2)}, square(2)) plot(Z, main="Pixel image") X <- runifpoint(42) plot(dirichlet(X), main="Tessellation") fanfare("II. Graphics") plot(letterR, col="green", border="red", lwd=2, main="Polygonal window with colour fill") plot(letterR, hatch=TRUE, spacing=0.15, angle=30, main="Polygonal window with line shading") data(amacrine) plot(amacrine, chars=c(1,16), main="plot(X, chars = c(1,16))") plot(amacrine, cols=c("red","blue"), chars=16, main="plot(X, cols=c(\"red\", \"blue\"))") opa <- par(mfrow=c(1,2)) plot(longleaf, markscale=0.03, main="markscale=0.03") plot(longleaf, markscale=0.09, main="markscale=0.09") par(opa) Z <- as.im(function(x,y) { r <- sqrt(x^2+y^2); r * exp(-r) }, owin(c(-5,5),c(-5,5))) plot(Z, main="pixel image: image plot") plot(Z, main="pixel image: image plot (heat colours)", col=heat.colors(256)) contour(Z, main="pixel image: contour plot", axes=FALSE) plot(Z, main="pixel image: image + contour plot") contour(Z, add=TRUE) persp(Z, colmap=terrain.colors(128), shade=0.3, phi=30,theta=100, main="pixel image: perspective plot") ct <- colourmap(rainbow(20), breaks=seq(-1,1,length=21)) plot(ct, main="Colour map for real numbers") ca <- colourmap(rainbow(8), inputs=letters[1:8]) plot(ca, main="Colour map for discrete values") fanfare("III. Basic operations") X <- swedishpines subset <- 1:20 plot(X[subset], main="subset operation: X[subset]") subwindow <- owin(poly=list(x=c(0,96,96,40,40),y=c(0,0,100,100,50))) plot(X[subwindow], main="subset operation: X[subwindow]") L <- rpoisline(10, owin(c(1.5,4.5),c(0.2,3.6))) S <- L[letterR] plot(L, main="subset operation: L[subwindow]") plot(S, add=TRUE, col="red") data(lansing) plot(lansing, "Lansing Woods data") plot(split(lansing), main="split operation: split(X)") data(longleaf) plot(longleaf, main="Longleaf Pines data") plot(cut(longleaf, breaks=3), main=c("cut by marks", "cut(longleaf, breaks=3)")) X <- runifpoint(100) Z <- dirichlet(runifpoint(16)) plot(Z, main="cut by tessellation") plot(cut(X, Z), add=TRUE) plot(split(X, Z), main="split by tessellation") W <- square(1) X <- as.im(function(x,y){sqrt(x^2+y^2)}, W) Y <- dirichlet(runifpoint(12, W)) plot(split(X,Y), main="image split by tessellation") plot(a, main="Self-crossing points") plot(selfcrossing.psp(a), add=TRUE, col="red") a <- as.psp(matrix(runif(20), 5, 4), window=square(1)) b <- rstrat(square(1), 5) plot(a, lwd=3, col="green", main="project points to segments") plot(b, add=TRUE, col="red", pch=16) v <- project2segment(b, a) Xproj <- v$Xproj plot(Xproj, add=TRUE, pch=16) arrows(b$x, b$y, Xproj$x, Xproj$y, angle=10, length=0.15, col="red") plot(a, main="pointsOnLines(L)") plot(pointsOnLines(a, np=100), add=TRUE, pch="+") fanfare("IV. Exploratory data analysis") plot(swedishpines, main="Quadrat counts", pch="+") tab <- quadratcount(swedishpines, 4) plot(tab, add=TRUE, lty=2, cex=2, col="blue") plot(swedishpines, main="", pch="+") title(main=expression(chi^2 * " test"), cex.main=2) tes <- quadrat.test(swedishpines, 3) tes plot(tes, add=TRUE, col="red", cex=1.5, lty=2, lwd=3) title(sub=paste("p-value =", signif(tes$p.value,3)), cex.sub=1.4) tesk <- ks.test.ppm(ppm(swedishpines), function(x,y){x}) tesk plot(tesk) data(cells) Z <- density.ppp(cells, 0.07) plot(Z, main="Kernel smoothed intensity of point pattern") plot(cells, add=TRUE) data(bei) ZA <- adaptive.density(bei, 0.01, nrep=5) plot(ZA, main="Adaptive intensity of point pattern", col=grey(seq(1,0,length=256))) plot(bei, add=TRUE, pch=".") D <- density(a, sigma=0.05) plot(D, main="Kernel smoothed intensity of line segment pattern") plot(a, add=TRUE) data(longleaf) parsave <- par(mfrow=c(1,2)) plot(longleaf, main="Longleaf Pines data") plot(smooth.ppp(longleaf, 10), main="Spatial smoothing of marks") par(parsave) data(cells) fryplot(cells, main=c("Fry plot","cells data"), pch="+") data(longleaf) miplot(longleaf, main="Morishita Index plot", pch=16, col="blue") plot(swedishpines, main="Swedish Pines data") K <- Kest(swedishpines) plot(K, main="K function for Swedish Pines") en <- envelope(swedishpines, fun=Kest, nsim=10, correction="translate") plot(en, main="Envelopes of K function based on CSR") pc <- pcf(swedishpines) plot(pc, main="Pair correlation function") plot(swedishpines, main="nearest neighbours") m <- nnwhich(swedishpines) b <- swedishpines[m] arrows(swedishpines$x, swedishpines$y, b$x, b$y, angle=12, length=0.1, col="red") plot(swedishpines %mark% (nndist(swedishpines)/2), markscale=1, main="Stienen diagram") Z <- distmap(swedishpines, dimyx=512) plot(swedishpines$window, main="Distance map") plot(Z, add=TRUE) points(swedishpines) W <- rebound.owin(letterR, square(5)) plot(distmap(W), main="Distance map") plot(W, add=TRUE) a <- psp(runif(20),runif(20),runif(20),runif(20), window=owin()) contour(distmap(a), main="Distance map") plot(a, add=TRUE,col="red") plot(allstats(swedishpines)) data(bramblecanes) plot(bramblecanes) bramblecanes <- rescale(bramblecanes, 1/9) plot(alltypes(bramblecanes, "K"), ylab="K(r)", mar.panel=c(4,4,2,2)+0.1) data(amacrine) plot(alltypes(amacrine, Lcross, envelope=TRUE, nsim=9), ylab="L(r)") data(ponderosa) ponderosa.extra$plotit(main="Ponderosa Pines") L <- localL(ponderosa) plot(L, lty=1, col=1, main="neighbourhood density functions for Ponderosa Pines") parsave <- par(mfrow=c(1,2)) ponderosa.extra$plotit() par(pty="s") plot(L, iso007 ~ r, main="point B") ponderosa.extra$plotit() L12 <- localL(ponderosa, rvalue=12) P12 <- ponderosa %mark% L12 Z12 <- smooth.ppp(P12, sigma=5, dimyx=128) plot(Z12, col=topo.colors(128), main="smoothed neighbourhood density") contour(Z12, add=TRUE) points(ponderosa, pch=16, cex=0.5) data(amacrine) plot(amacrine, main="Amacrine cells data") par(pty="s") mkc <- markcorr(amacrine, function(m1,m2) {m1==m2}, correction="translate", method="density", kernel="epanechnikov") plot(mkc, main="Mark correlation function") par(parsave) X <- runifpoint(42) plot(dirichlet(X)) plot(X, add=TRUE) plot(delaunay(X)) plot(X, add=TRUE) fanfare("V. Model-fitting") data(japanesepines) plot(japanesepines) fit <- ppm(japanesepines, ~1) print(fit) fit <- ppm(japanesepines, ~polynom(x,y,2)) print(fit) plot(fit, how="image", se=FALSE, main=c("Inhomogeneous Poisson model", "fit by maximum likelihood", "Fitted intensity")) plot(fit, how="image", trend=FALSE, main="Standard error of fitted intensity") data(redwood) parsave <- par(mfrow=c(1,2)) plot(redwood) fitT <- kppm(redwood, ~1, clusters="Thomas") oop <- par(pty="s") plot(fitT, main=c("Thomas model","fit by minimum contrast")) plot(redwood) plot(simulate(fitT)[[1]], main="simulation from fitted Thomas model") plot(swedishpines) fit <- ppm(swedishpines, ~1, Strauss(r=7)) print(fit) plot(fit, how="image", main=c("Strauss model", "fit by maximum pseudolikelihood", "Conditional intensity plot")) plot(swedishpines) fit <- ppm(swedishpines, ~1, PairPiece(c(3,5,7,9,11,13))) plot(fitin(fit), main=c("Pairwise interaction model", "fit by maximum pseudolikelihood")) par(parsave) Xsim <- rmh(model=fit, start=list(n.start=80), control=list(nrep=100)) plot(Xsim, main="Simulation from fitted Strauss model") data(demopat) demopat <- rescale(demopat, 8) unitname(demopat) <- c("mile", "miles") demopat plot(demopat, cols=c("red", "blue")) fit <- ppm(demopat, ~marks + polynom(x,y,2), Poisson()) plot(fit, trend=TRUE, se=TRUE) fanfare("VI. Simulation") data(letterR) plot(letterR, main="Poisson random points") lambda <- 10/area.owin(letterR) points(rpoispp(lambda, win=letterR)) points(rpoispp(9 * lambda, win=letterR)) points(rpoispp(90 * lambda, win=letterR)) plot(rpoispp(100)) plot(rpoispp(function(x,y){1000 * exp(-3*x)}, 1000)) plot(rMaternII(200, 0.05)) plot(rSSI(0.05, 200)) plot(rThomas(10, 0.2, 5)) plot(rMatClust(10, 0.05, 4)) plot(rGaussPoisson(30, 0.05, 0.5)) plot(redwood, main="random thinning - rthin()") points(rthin(redwood, 0.5), col="green", cex=1.4) plot(rcell(nx=15)) plot(rsyst(nx=5)) abline(h=(1:4)/5, lty=2) abline(v=(1:4)/5, lty=2) plot(rstrat(nx=5)) abline(h=(1:4)/5, lty=2) abline(v=(1:4)/5, lty=2) X <- rsyst(nx=10) plot(rjitter(X, 0.02)) Xg <- rmh(list(cif="geyer", par=c(beta=1.25, gamma=1.6, r=0.2, sat=4.5), w=c(0,10,0,10)), control=list(nrep=1e4), start=list(n.start=200)) plot(Xg, main=paste("Geyer saturation process\n", "rmh() with cif=\"geyer\"")) plot(rpoisline(10)) plot(rlinegrid(30, 0.1)) L <- as.psp(matrix(runif(20), 5, 4), window=square(1)) plot(L, main="runifpointOnLines(30, L)") plot(runifpointOnLines(30, L), add=TRUE, pch="+") plot(L, main="rpoisppOnLines(3, L)") plot(rpoisppOnLines(3, L), add=TRUE, pch="+") fanfare("VII. Programming tools") nopa <- par(mfrow=c(2,2)) data(letterR) Rbox <- as.rectangle(letterR) Rmask <- as.mask(letterR, dimyx=256) v <- erode.owin(Rmask, 0.25) plot(Rbox, type="n", main="erode.owin") plot(v, add=TRUE) plot(letterR, add=TRUE) v <- dilate.owin(Rmask, 0.3) plot(as.rectangle(v), type="n", main="dilate.owin") plot(v, add=TRUE) plot(letterR, add=TRUE) v <- closing.owin(Rmask, 0.25) plot(Rbox, type="n", main="closing.owin") plot(v, add=TRUE) plot(letterR, add=TRUE) v <- opening.owin(Rmask, 0.3) plot(Rbox, type="n", main="opening.owin") plot(v, add=TRUE) plot(letterR, add=TRUE) par(nopa) plot(Z, main="An image Z") plot(levelset(Z, 4)) plot(cut(Z, 5)) plot(eval.im(sqrt(Z) - 3)) plot(solutionset(abs(Z - 6) <= 1)) Z <- as.im(function(x,y) { 4 * x^2 + 3 * y }, letterR) plot(Z) plot(letterR, add=TRUE) plot(blur(Z, 0.3, bleed=TRUE)) plot(letterR, add=TRUE) plot(blur(Z, 0.3, bleed=FALSE)) plot(letterR, add=TRUE) plot(blur(Z, 0.3, bleed=FALSE)) plot(letterR, add=TRUE) par(oldpar) showoffK <- function(Y, current, ..., fullpicture,rad) { plot(fullpicture, main=c("Animation using `applynbd'", "explaining the K function")) points(Y, cex=2) u <- current points(u[1],u[2],pch="+",cex=3) theta <- seq(0,2*pi,length=100) polygon(u[1]+ rad * cos(theta),u[2]+rad*sin(theta)) text(u[1]+rad/3,u[2]+rad/2,Y$n,cex=3) if(runif(1) < 0.2) Sys.sleep(runif(1, max=0.4)) return(Y$n) } applynbd(redwood, R=0.2, showoffK, fullpicture=redwood, rad=0.2, exclude=TRUE) options(oldoptions)