plotClusterHeatmap_adjusted.R
library(RColorBrewer)
plotClusterHeatmap_adjusted <- function (x, hm2 = NULL, k = "meta20", m = NULL, fun = c("median",
"mean"), cluster_anno = TRUE, split_by = NULL, scale = TRUE,
draw_dend = TRUE, draw_freqs = FALSE, palette = rev(brewer.pal(11,
"RdYlBu")))
{
CATALYST:::.check_sce(x)
fun <- match.arg(fun)
k <- CATALYST:::.check_validity_of_k(x, k)
CATALYST:::.check_cd_factor(x, split_by)
u <- c("abundances", "state_markers", rownames(x))
if (!is.null(hm2))
stopifnot(hm2 %in% u)
nk <- nlevels(x$cluster_id <- cluster_ids(x, k))
ms_by_k <- t(CATALYST:::.agg(x, "cluster_id", fun))
d <- dist(ms_by_k[, type_markers(x)])
row_clustering <- hclust(d, method = "average")
if (cluster_anno) {
anno <- levels(x$cluster_id)
if (nk > 30) {
cols <- colorRampPalette(CATALYST:::.cluster_cols)(nk)
}
else {
cols <- CATALYST:::.cluster_cols[seq_len(nk)]
}
cols <- setNames(cols, anno)
cluster_anno <- CATALYST:::.row_anno(anno, cols, "cluster_id",
row_clustering, draw_dend)
}
if (!is.null(m)) {
CATALYST:::.check_validity_of_k(x, m)
idx <- match(seq_len(nk), cluster_codes(x)[, k])
anno <- factor(cluster_codes(x)[, m][idx])
if (nlevels(anno) > 30) {
cols <- colorRampPalette(CATALYST:::.cluster_cols)(nlevels(anno))
}
else {
cols <- CATALYST:::.cluster_cols[seq_len(nlevels(anno))]
}
cols <- setNames(cols, levels(anno))
merging_anno <- CATALYST:::.row_anno(anno, cols, "merging_id",
row_clustering, draw_dend)
}
many <- !is.null(split_by)
cs <- seq_len(ncol(x))
if (many)
groups <- split(cs, x[[split_by]])
else groups <- list(cs)
if (scale)
assay(x, "exprs") <- CATALYST:::.scale_exprs(assay(x, "exprs"),
1)
hm_cols <- colorRampPalette(palette)(100)
hms <- lapply(seq_along(groups), function(i) {
idx <- groups[[i]]
cs_by_k <- split(idx, x$cluster_id[idx])
if (!many) {
if (scale) {
hm1_es <- t(CATALYST:::.agg(x, "cluster_id", fun))
}
else {
hm1_es <- ms_by_k
}
}
else {
hm1_es <- t(CATALYST:::.agg(x[, idx], "cluster_id", fun))
}
hm1 <- Heatmap(matrix = hm1_es[, pop_markers], col = hm_cols,
name = "expression", column_names_gp = gpar(fontsize = 8),
rect_gp = gpar(col = "white"), na_col = "lightgrey",
cluster_rows = row_clustering, cluster_columns = FALSE,
show_row_dend = draw_dend, column_title = names(groups)[i][many])
freq_bars <- freq_anno <- NULL
if (draw_freqs) {
fq <- round(tabulate(x$cluster_id[idx])/length(idx) *
100, 2)
freq_bars <- rowAnnotation(`Frequency [%]` = row_anno_barplot(x = fq,
axis = TRUE, border = FALSE, bar_with = 0.8,
gp = gpar(fill = "grey50", col = "white")),
width = unit(2, "cm"))
labs <- paste0(levels(x$cluster_id), " (", fq, "%)")
freq_anno <- rowAnnotation(text = row_anno_text(labs),
width = max_text_width(labs))
}
p <- hm1 + freq_bars + freq_anno
if (is(cluster_anno, "Heatmap"))
p <- cluster_anno + p
if (exists("merging_anno"))
p <- merging_anno + p
if (!is.null(hm2)) {
if (hm2 == "abundances") {
cs <- table(x$cluster_id[idx], x$sample_id[idx])
fq <- as.matrix(unclass(prop.table(cs, 2)))
fq <- fq[, !is.na(colSums(fq)), drop = FALSE]
p <- p + Heatmap(matrix = fq, name = "frequency",
na_col = "lightgrey", rect_gp = gpar(col = "white"),
show_row_names = FALSE, column_names_gp = gpar(fontsize = 8),
cluster_rows = row_clustering, cluster_columns = FALSE)
}
else if (hm2 == "state_markers") {
p <- p + Heatmap(col = hm_cols, na_col = "lightgrey",
matrix = hm1_es[, state_markers(x)], rect_gp = gpar(col = "white"),
show_heatmap_legend = FALSE, cluster_rows = row_clustering,
cluster_columns = FALSE, column_names_gp = gpar(fontsize = 8))
}
else {
for (ch in hm2) {
ms <- CATALYST:::.agg(x[ch, idx], c("cluster_id", "sample_id"),
fun)
ms <- do.call("rbind", ms)
rownames(ms) <- levels(x$cluster_id)
p <- p + Heatmap(matrix = ms, col = hm_cols,
na_col = "lightgrey", rect_gp = gpar(col = "white"),
show_heatmap_legend = FALSE, show_row_names = FALSE,
cluster_rows = row_clustering, cluster_columns = FALSE,
column_title = ch, column_names_gp = gpar(fontsize = 8))
}
}
}
return(p)
})
for (i in seq_along(hms)) draw(hms[[i]])
invisible(hms)
}