Skip to main content
  • Home
  • Development
  • Documentation
  • Donate
  • Operational login
  • Browse the archive

swh logo
SoftwareHeritage
Software
Heritage
Archive
Features
  • Search

  • Downloads

  • Save code now

  • Add forge now

  • Help

swh:1:snp:a568cc5cff39965992895669038ed8c43a59eedd
  • Code
  • Branches (1)
  • Releases (0)
    • Branches
    • Releases
    • HEAD
    • refs/heads/main
    No releases to show
  • bbb89f8
  • /
  • Figure 6 -- Tokens Task Data Analysis
  • /
  • Figure 6S1 -- Tokens Task Data Fits
  • /
  • Figure_6S1_Generate.m
Raw File Download

To reference or cite the objects present in the Software Heritage archive, permalinks based on SoftWare Hash IDentifiers (SWHIDs) must be used.
Select below a type of object currently browsed in order to display its associated SWHID and permalink.

  • content
  • directory
  • revision
  • snapshot
content badge Iframe embedding
swh:1:cnt:a36ffb460164e21e1a2ae9563483fdd00d4eb7d4
directory badge Iframe embedding
swh:1:dir:6856c0154c49e2c750057eba35ce0d78265070fd
revision badge
swh:1:rev:2878a3d9f5a3b9b89a0084a897bef3414e9de4a2
snapshot badge
swh:1:snp:a568cc5cff39965992895669038ed8c43a59eedd

This interface enables to generate software citations, provided that the root directory of browsed objects contains a citation.cff or codemeta.json file.
Select below a type of object currently browsed in order to generate citations for them.

  • content
  • directory
  • revision
  • snapshot
Generate software citation in BibTex format (requires biblatex-software package)
Generating citation ...
Generate software citation in BibTex format (requires biblatex-software package)
Generating citation ...
Generate software citation in BibTex format (requires biblatex-software package)
Generating citation ...
Generate software citation in BibTex format (requires biblatex-software package)
Generating citation ...
Tip revision: 2878a3d9f5a3b9b89a0084a897bef3414e9de4a2 authored by nwbarendregt on 03 May 2022, 15:08:29 UTC
Add files via upload
Tip revision: 2878a3d
Figure_6S1_Generate.m
% Figure_6S1_Generate.m
% Script used to generate Figure 6 -- Supplemental Figure 1 
% from Barendregt et al., 2022.

clear

% Load subject and MCMC data:
load('trials.mat'); subs = 20; speeds = 2;
load('model_fit_NB.mat');
load('model_fit_Const.mat');
load('model_fit_UGM.mat');

% Define parameters to simulate models:
Nt = 15;

% Format data from NB model:
NB = model_fit_NB(:);
model_AICc = NaN(1,length(NB));

% Find best-fit and worst-fit NB model:
for i = 1:length(NB)
    model_AICc(i) = NB(i).AICc;
end
[~,m] = min(model_AICc); [~,M] = max(model_AICc);

% Plot best-fit model and associated subject data:
Sub_ID = NB(m).idSubject;
speed = NB(m).speed; t_d = speed/1000;
Sub_T = trials.nDecisionToken((trials.nSpeedFast == speed) & (trials.idSubject == Sub_ID));
Sub_Data = histcounts(Sub_T,-0.5:1:(Nt+0.5),'normalization','probability');
figure
stairs(-0.5:Nt+0.5,[Sub_Data 0],'k','linewidth',15)
hold on; xlim([0 Nt])
stairs(-0.5:Nt+0.5,[NB(m).Fit 0],'linewidth',15,'color','#1b9e77');

% Display KL divergence between subject data and fitted model:
disp(KL(Sub_Data,NB(m).Fit))

% Plot worst-fit model and associated subject data:
Sub_ID = NB(M).idSubject;
speed = NB(M).speed; t_d = speed/1000;
Sub_T = trials.nDecisionToken((trials.nSpeedFast == speed) & (trials.idSubject == Sub_ID));
Sub_Data = histcounts(Sub_T,-0.5:1:(Nt+0.5),'normalization','probability');
figure
stairs(-0.5:Nt+0.5,[Sub_Data 0],'k','linewidth',15)
hold on; xlim([0 Nt])
stairs(-0.5:Nt+0.5,[NB(M).Fit 0],'linewidth',15,'color','#1b9e77');

% Display KL divergence between subject data and fitted model:
disp(KL(Sub_Data,NB(M).Fit))

% Format data from Const model:
Const = model_fit_Const(:);
model_AICc = NaN(1,length(Const));

% Find best-fit and worst-fit Const model:
for i = 1:length(Const)
    model_AICc(i) = Const(i).AICc;
end
[~,m] = min(model_AICc); [~,M] = max(model_AICc);

% Plot best-fit model and associated subject data:
Sub_ID = Const(m).idSubject;
speed = Const(m).speed; t_d = speed/1000;
Sub_T = trials.nDecisionToken((trials.nSpeedFast == speed) & (trials.idSubject == Sub_ID));
Sub_Data = histcounts(Sub_T,-0.5:1:(Nt+0.5),'normalization','probability');
figure
stairs(-0.5:Nt+0.5,[Sub_Data 0],'k','linewidth',15)
hold on; xlim([0 Nt])
stairs(-0.5:Nt+0.5,[Const(m).Fit 0],'linewidth',15,'color','#d95f02');

% Display KL divergence between subject data and fitted model:
disp(KL(Sub_Data,Const(m).Fit))

% Plot worst-fit model and associated subject data:
Sub_ID = Const(M).idSubject;
speed = Const(M).speed; t_d = speed/1000;
Sub_T = trials.nDecisionToken((trials.nSpeedFast == speed) & (trials.idSubject == Sub_ID));
Sub_Data = histcounts(Sub_T,-0.5:1:(Nt+0.5),'normalization','probability');
figure
stairs(-0.5:Nt+0.5,[Sub_Data 0],'k','linewidth',15)
hold on; xlim([0 Nt])
stairs(-0.5:Nt+0.5,[Const(M).Fit 0],'linewidth',15,'color','#d95f02');

% Display KL divergence between subject data and fitted model:
disp(KL(Sub_Data,Const(M).Fit))

% Format data from UGM:
UGM = model_fit_UGM(:);
model_AICc = NaN(1,length(UGM));

% Find best-fit and worst-fit UGM:
for i = 1:length(UGM)
    model_AICc(i) = UGM(i).AICc;
end
[~,m] = min(model_AICc); [~,M] = max(model_AICc);

% Plot best-fit model and associated subject data:
Sub_ID = UGM(m).idSubject;
speed = UGM(m).speed; t_d = speed/1000;
Sub_T = trials.nDecisionToken((trials.nSpeedFast == speed) & (trials.idSubject == Sub_ID));
Sub_Data = histcounts(Sub_T,-0.5:1:(Nt+0.5),'normalization','probability');
figure
stairs(-0.5:Nt+0.5,[Sub_Data 0],'k','linewidth',15)
hold on; xlim([0 Nt])
stairs(-0.5:Nt+0.5,[UGM(m).Fit 0],'linewidth',15,'color','#7570b3');

% Display KL divergence between subject data and fitted model:
disp(KL(Sub_Data,UGM(m).Fit))

% Plot worst-fit model and associated subject data:
Sub_ID = UGM(M).idSubject;
speed = UGM(M).speed; t_d = speed/1000;
Sub_T = trials.nDecisionToken((trials.nSpeedFast == speed) & (trials.idSubject == Sub_ID));
Sub_Data = histcounts(Sub_T,-0.5:1:(Nt+0.5),'normalization','probability');
figure
stairs(-0.5:Nt+0.5,[Sub_Data 0],'k','linewidth',15)
hold on; xlim([0 Nt])
stairs(-0.5:Nt+0.5,[UGM(M).Fit 0],'linewidth',15,'color','#7570b3');

% Display KL divergence between subject data and fitted model:
disp(KL(Sub_Data,UGM(M).Fit))

back to top

Software Heritage — Copyright (C) 2015–2025, The Software Heritage developers. License: GNU AGPLv3+.
The source code of Software Heritage itself is available on our development forge.
The source code files archived by Software Heritage are available under their own copyright and licenses.
Terms of use: Archive access, API— Content policy— Contact— JavaScript license information— Web API