Skip to main content
  • Home
  • Development
  • Documentation
  • Donate
  • Operational login
  • Browse the archive

swh logo
SoftwareHeritage
Software
Heritage
Archive
Features
  • Search

  • Downloads

  • Save code now

  • Add forge now

  • Help

https://github.com/cran/automl
28 March 2020, 16:12:19 UTC
  • Code
  • Branches (11)
  • Releases (0)
  • Visits
    • Branches
    • Releases
    • HEAD
    • refs/heads/master
    • refs/tags/1.0.5
    • refs/tags/1.0.6
    • refs/tags/1.0.8
    • refs/tags/1.2.0
    • refs/tags/1.2.6
    • refs/tags/1.2.7
    • refs/tags/1.2.8
    • refs/tags/1.3.0
    • refs/tags/1.3.1
    • refs/tags/1.3.2
    No releases to show
  • 41d8d6b
  • /
  • man
  • /
  • autopar.Rd
Raw File Download
Take a new snapshot of a software origin

If the archived software origin currently browsed is not synchronized with its upstream version (for instance when new commits have been issued), you can explicitly request Software Heritage to take a new snapshot of it.

Use the form below to proceed. Once a request has been submitted and accepted, it will be processed as soon as possible. You can then check its processing state by visiting this dedicated page.
swh spinner

Processing "take a new snapshot" request ...

Permalinks

To reference or cite the objects present in the Software Heritage archive, permalinks based on SoftWare Hash IDentifiers (SWHIDs) must be used.
Select below a type of object currently browsed in order to display its associated SWHID and permalink.

  • content
  • directory
  • revision
  • snapshot
origin badgecontent badge Iframe embedding
swh:1:cnt:a41da8ec2217406d561a89f43c2a5cc04dc17aa4
origin badgedirectory badge Iframe embedding
swh:1:dir:68bf7fe3e785996b9884df8b2c70e269c9776cd0
origin badgerevision badge
swh:1:rev:ab2d7c8d13ae85f6be55b525f76ffcc2f94052ef
origin badgesnapshot badge
swh:1:snp:03e1d6b518b5a83c5975b8961bca8cca1eea4b77
Citations

This interface enables to generate software citations, provided that the root directory of browsed objects contains a citation.cff or codemeta.json file.
Select below a type of object currently browsed in order to generate citations for them.

  • content
  • directory
  • revision
  • snapshot
Generate software citation in BibTex format (requires biblatex-software package)
Generating citation ...
Generate software citation in BibTex format (requires biblatex-software package)
Generating citation ...
Generate software citation in BibTex format (requires biblatex-software package)
Generating citation ...
Generate software citation in BibTex format (requires biblatex-software package)
Generating citation ...
Tip revision: ab2d7c8d13ae85f6be55b525f76ffcc2f94052ef authored by Alex Boulangé on 16 January 2020, 10:40:09 UTC
version 1.3.2
Tip revision: ab2d7c8
autopar.Rd
\name{autopar}
\alias{autopar}
\title{parameters for automatic hyperparameters optimization}
\description{
List of parameters to allow multi deep neural network automatic hyperparameters tuning with Particle Swarm Optimization\cr
Not mandatory (the list is preset and all arguments are initialized with default value) but it is advisable to adjust some important arguments for performance reasons (including processing time)
}
\arguments{
\item{psopartpopsize}{ number of particles in swarm, the main argument that should be tuned (default value 8, which is quite low)\cr
#tuning priority 1}

\item{psoxxx}{ see \link{pso} for other PSO specific arguments details}

\item{numiterations}{ number of convergence steps between particles (hyperparameters), default value 3)\cr
#tuning priority 1}

\item{auto_modexec}{ if \sQuote{TRUE} the type of Neural Net optimization will be randomly choosen between \sQuote{trainwgrad} and \sQuote{trainwpso} for each particle\cr
default value is \sQuote{FALSE} (so default value of argument \sQuote{modexec} in \link{automl_train_manual} function, actually \sQuote{trainwgrad} as default is more suited to large data volume)\cr
the value can be forced if defined in \link{hpar} list}

\item{auto_runtype}{ if \sQuote{2steps} the 2 following steps will be run automatically (default value is \sQuote{normal}):\cr
1st overfitting, the goal is performance\cr
2nd regularization, the goal is generalization \cr
 nb: \sQuote{overfitting} or \sQuote{regularization} may be directly specified to avoid the 2 steps\cr}

\item{auto_minibatchsize}{ see below}
\item{auto_minibatchsize_min}{ see below}
\item{auto_minibatchsize_max}{ \sQuote{auto_minibatch} default value \sQuote{TRUE} for automatic adjustment of \sQuote{minibatchsize} argument in \link{automl_train_manual} function\cr
the minimum and maximum value for \sQuote{minibatchsize} corespond to 2 to the power value (default 0 for \sQuote{auto_minibatchsize_min} and 9 for \sQuote{auto_minibatchsize_max})}

\item{auto_learningrate}{ see below}
\item{auto_learningrate_min}{ see below}
\item{auto_learningrate_max}{ \sQuote{auto_learningrate} default value \sQuote{TRUE} for automatic adjustment of \sQuote{learningrate} argument in \link{automl_train_manual} function\cr
the minimum and maximum value for \sQuote{learningrate} correspond to 10 to the power negative value (default -5 for \sQuote{auto_learningrate_min} and -2 for \sQuote{auto_learningrate_max})}

\item{auto_beta1}{ see below}
\item{auto_beta2}{ \sQuote{auto_beta1} and \sQuote{auto_beta2} default value \sQuote{TRUE} for automatic adjustment of \sQuote{beta1} and \sQuote{beta2} argument in \link{automl_train_manual} function}

\item{auto_psopartpopsize}{ see below}
\item{auto_psopartpopsize_min}{ see below}
\item{auto_psopartpopsize_max}{ \sQuote{auto_psopartpopsize} default value \sQuote{TRUE} for automatic adjustment of \sQuote{psopartpopsize} argument in \link{automl_train_manual} function (concern only \sQuote{modexec} set to \sQuote{trainwpso})\cr
the minimum and maximum value for \sQuote{psopartpopsize} ; default 2 for \sQuote{auto_psopartpopsize_min} and 50 for \sQuote{auto_psopartpopsize_max})}

\item{auto_lambda}{ see below}
\item{auto_lambda_min}{ see below}
\item{auto_lambda_max}{ \sQuote{auto_lambda} default value \sQuote{FALSE} for automatic adjustment of \sQuote{lambda} regularization argument in \link{automl_train_manual} function\cr
the minimum and maximum value for \sQuote{lambda} correspond to 10 to the power value  (default -2) for \sQuote{auto_lambda_min} and (default 4) for \sQuote{auto_lambda_max})}

\item{auto_psovelocitymaxratio}{ see below}
\item{auto_psovelocitymaxratio_min}{ see below}
\item{auto_psovelocitymaxratio_max}{ \sQuote{auto_psovelocitymaxratio} default value \sQuote{TRUE} for automatic adjustment of \sQuote{psovelocitymaxratio} PSO velocity max ratio argument in \link{automl_train_manual} function\cr
the minimum and maximum value for \sQuote{psovelocitymaxratio}; default 0.01 for \sQuote{auto_psovelocitymaxratio_min} and 0.5 for \sQuote{auto_psovelocitymaxratio_max}}

\item{auto_layers}{ see below (\sQuote{auto_layers} default value \sQuote{TRUE} for automatic adjustment of layers shape in \link{automl_train_manual} function)}
\item{auto_layers_min}{ (linked to \sQuote{auto_layers} above, set \link{hpar} \sQuote{layersshape} and \sQuote{layersacttype}) the minimum number of hidden layers (default 1 no hidden layer)}
\item{auto_layers_max}{ (linked to \sQuote{auto_layers} above, set \link{hpar} \sQuote{layersshape} and \sQuote{layersacttype}) the maximum number of hidden layers (default 2)}
\item{auto_layersnodes_min}{ (linked to \sQuote{auto_layers} above, set \link{hpar} \sQuote{layersshape} and \sQuote{layersacttype}) the minimum number of nodes per layer (default 3)}
\item{auto_layersnodes_max}{ (linked to \sQuote{auto_layers} above, set \link{hpar} \sQuote{layersshape} and \sQuote{layersacttype}) the maximum number of nodes per layer (default 33)}

\item{auto_layersdropo}{ see below}
\item{auto_layersdropoprob_min}{ see below}
\item{auto_layersdropoprob_max}{ \sQuote{auto_layersdropo} default value \sQuote{FALSE} for automatic adjustment of \link{hpar} \sQuote{layersdropoprob} in \link{automl_train_manual} function)\cr
the minimum and maximum value for \sQuote{layersdropoprob}; default 0.05 for \sQuote{auto_layersdropoprob_min} and 0.75 for \sQuote{auto_layersdropoprob_max}}

\item{seed}{ seed for reproductibility (default 4)}

\item{nbcores}{ number of cores used to parallelize particles optimization, not available on Windows (default 1, automatically reduced if not enough cores)}

\item{verbose}{ to display or not the costs at each iteration for each particle (default TRUE)}\cr

\item{subtimelimit}{ time limit in seconds for sub modelizations to avoid waiting too long for a specific particle to finish its modelization (default 3600)}\cr

\emph{back to \link{automl_train}}
}

Software Heritage — Copyright (C) 2015–2025, The Software Heritage developers. License: GNU AGPLv3+.
The source code of Software Heritage itself is available on our development forge.
The source code files archived by Software Heritage are available under their own copyright and licenses.
Terms of use: Archive access, API— Contact— JavaScript license information— Web API

back to top