# Copyright 2016 the GPflow authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import tensorflow as tf import numpy as np from numpy.testing import assert_almost_equal import gpflow from gpflow.test_util import GPflowTestCase class Quadratic(gpflow.models.Model): def __init__(self): rng = np.random.RandomState(0) gpflow.models.Model.__init__(self) self.x = gpflow.Param(rng.randn(10)) @gpflow.params_as_tensors def _build_likelihood(self): return tf.negative(tf.reduce_sum(tf.square(self.x))) class TestOptimize(GPflowTestCase): def test_adam(self): with self.test_context(): m = Quadratic() opt = gpflow.train.AdamOptimizer(0.01) opt.minimize(m, maxiter=5000) self.assertTrue(m.x.read_value().max() < 1e-2) def test_lbfgsb(self): with self.test_context(): m = Quadratic() opt = gpflow.train.ScipyOptimizer() opt.minimize(m, maxiter=1000) self.assertTrue(m.x.read_value().max() < 1e-6) class Empty(gpflow.models.Model): def __init__(self, *args, **kwargs): if 'name' not in kwargs: kwargs['name'] = 'Empty' super().__init__(*args, **kwargs) def _build_likelihood(self): return tf.convert_to_tensor(1., dtype=gpflow.settings.float_type) class EmptyTest(GPflowTestCase): def test_compile_model_without_parameters(self): with self.test_context(): m = Empty() assert_almost_equal(m.compute_log_likelihood(), 1.0) assert_almost_equal(m.compute_log_prior(), 0.0) def test_parameters_list_empty(self): with self.test_context(): m = Empty(autobuild=False) self.assertEqual(list(m.parameters), []) self.assertEqual(list(m.trainable_parameters), []) self.assertEqual(list(m.params), []) m.compile() self.assertEqual(list(m.parameters), []) self.assertEqual(list(m.trainable_parameters), []) self.assertEqual(list(m.params), []) def test_objective_tensor(self): with self.test_context(): m = Empty(autobuild=False) self.assertEqual(m.objective, None) m.build() self.assertTrue(gpflow.misc.is_tensor(m.objective)) class ReplaceParameterTest(GPflowTestCase): class Origin(gpflow.models.Model): def __init__(self): super(ReplaceParameterTest.Origin, self).__init__() self.a = gpflow.Param(1.) self.b = gpflow.Param(2.) @gpflow.params_as_tensors def _build_likelihood(self): return tf.square(self.a) + tf.square(self.b) def test_replace_parameter(self): class OriginSuccess(ReplaceParameterTest.Origin): def __init__(self): super(OriginSuccess, self).__init__() self.b = gpflow.Param(np.array(3.)) class OriginAllDataholders(ReplaceParameterTest.Origin): def __init__(self): super(OriginAllDataholders, self).__init__() self.a = gpflow.DataHolder(np.array(2.)) self.b = gpflow.DataHolder(np.array(2.)) with self.test_context(): m0 = self.Origin() m0.compile() assert_almost_equal(m0.compute_log_likelihood(), 5.0) m1 = OriginSuccess() m1.compile() assert_almost_equal(m1.compute_log_likelihood(), 10.0) m2 = OriginAllDataholders() m2.compile() assert_almost_equal(m2.compute_log_likelihood(), 8.0) class KeyboardRaiser: """ This wraps a function and makes it raise a KeyboardInterrupt after some number of calls """ def __init__(self, iters_to_raise): self.iters_to_raise = iters_to_raise self.count = 0 def __call__(self, *a, **kw): self.count += 1 if self.count >= self.iters_to_raise: raise KeyboardInterrupt def setup_sgpr(): X = np.random.randn(1000, 3) Y = np.random.randn(1000, 3) Z = np.random.randn(100, 3) return gpflow.models.SGPR(X, Y, Z=Z, kern=gpflow.kernels.RBF(3)) class TestLikelihoodAutoflow(GPflowTestCase): def test_lik_and_prior(self): with self.test_context(graph=tf.Graph()): m = setup_sgpr() l0 = m.compute_log_likelihood() p0 = m.compute_log_prior() m.clear() with self.test_context(graph=tf.Graph()): m.kern.variance.prior = gpflow.priors.Gamma(1.4, 1.6) m.compile() l1 = m.compute_log_likelihood() p1 = m.compute_log_prior() self.assertEqual(p0, 0.0) self.assertNotEqual(p0, p1) self.assertEqual(l0, l1) class TestName(GPflowTestCase): def test_name(self): with self.test_context(): m1 = Empty() self.assertEqual(m1.name, 'Empty') m2 = Empty(name='foo') self.assertEqual(m2.name, 'foo') class EvalDataSVGP(gpflow.models.SVGP): @gpflow.decors.autoflow() @gpflow.decors.params_as_tensors def XY(self): return self.X, self.Y class TestMinibatchSVGP(GPflowTestCase): def test_minibatch_sync(self): with self.test_context(): X = np.random.randn(1000, 1) Y = X.copy() Z = X[:100, :].copy() size = 10 m = EvalDataSVGP(X, Y, gpflow.kernels.RBF(1), gpflow.likelihoods.Gaussian(), minibatch_size=size, Z=Z) eX_prev, eY_prev = np.random.randn(size, 1), np.random.randn(size, 1) for _ in range(10): eX, eY = m.XY() assert not np.allclose(eX, eX_prev) assert not np.allclose(eY, eY_prev) assert np.allclose(eX, eY) eX_prev, eY_prev = eX, eY # class TestNoRecompileThroughNewModelInstance(GPflowTestCase): # """ Regression tests for Bug #454 """ # def setUp(self): # self.X = np.random.rand(10, 2) # self.Y = np.random.rand(10, 1) # def test_gpr(self): # with self.test_context(): # m1 = gpflow.models.GPR(self.X, self.Y, gpflow.kernels.Matern32(2)) # m1.compile() # m2 = gpflow.models.GPR(self.X, self.Y, gpflow.kernels.Matern32(2)) # self.assertFalse(m1._needs_recompile) # def test_sgpr(self): # with self.test_context(): # m1 = gpflow.models.SGPR(self.X, self.Y, gpflow.kernels.Matern32(2), Z=self.X) # m1.compile() # m2 = gpflow.models.SGPR(self.X, self.Y, gpflow.kernels.Matern32(2), Z=self.X) # self.assertFalse(m1._needs_recompile) # def test_gpmc(self): # with self.test_context(): # m1 = gpflow.models.GPMC( # self.X, self.Y, # gpflow.kernels.Matern32(2), # likelihood=gpflow.likelihoods.StudentT()) # m1.compile() # m2 = gpflow.models.GPMC( # self.X, self.Y, # gpflow.kernels.Matern32(2), # likelihood=gpflow.likelihoods.StudentT()) # self.assertFalse(m1._needs_recompile) # def test_sgpmc(self): # with self.test_context(): # m1 = gpflow.models.SGPMC( # self.X, self.Y, # gpflow.kernels.Matern32(2), # likelihood=gpflow.likelihoods.StudentT(), # Z=self.X) # m1.compile() # m2 = gpflow.models.SGPMC( # self.X, self.Y, # gpflow.kernels.Matern32(2), # likelihood=gpflow.likelihoods.StudentT(), # Z=self.X) # self.assertFalse(m1._needs_recompile) # def test_svgp(self): # with self.test_context(): # m1 = gpflow.models.SVGP( # self.X, self.Y, # gpflow.kernels.Matern32(2), # likelihood=gpflow.likelihoods.StudentT(), # Z=self.X) # m1.compile() # m2 = gpflow.models.SVGP( # self.X, self.Y, # gpflow.kernels.Matern32(2), # likelihood=gpflow.likelihoods.StudentT(), # Z=self.X) # self.assertFalse(m1._needs_recompile) # def test_vgp(self): # with self.test_context(): # m1 = gpflow.models.VGP( # self.X, self.Y, # gpflow.kernels.Matern32(2), # likelihood=gpflow.likelihoods.StudentT()) # m1.compile() # m2 = gpflow.models.VGP( # self.X, self.Y, # gpflow.kernels.Matern32(2), # likelihood=gpflow.likelihoods.StudentT()) # self.assertFalse(m1._needs_recompile) if __name__ == "__main__": tf.test.main()