\name{GaussianFields} \alias{Gaussian} \title{Methods for Gaussian Random Fields} \description{ Here, all the methods (models) for simulating Gaussian random fields are listed. } \section{Implemented models}{ \tabular{ll}{ \command{\link{RPcirculant}} \tab simulation by circulant embedding \cr \command{\link{RPcutoff}} \tab simulation by a variant of circulant embedding \cr \command{\link{RPcoins}} \tab simulation by random coin / shot noise \cr \command{\link{RPdirect}} \tab through the square root of the covariance matrix\cr \command{\link{RPgauss}} \tab generic model that chooses automatically among the specific methods \cr \command{\link{RPhyperplane}} \tab simulation by hyperplane tessellation \cr \command{\link{RPintrinsic}} \tab simulation by a variant of circulant embedding \cr \command{\link{RPnugget}} \tab simulation of (anisotropic) nugget effects \cr \command{\link{RPsequential}} \tab sequential method \cr \command{\link{RPspecific}} \tab model specific methods (very advanced)\cr \command{\link{RPspectral}} \tab spectral method \cr \command{\link{RPtbm}} \tab turning bands \cr } } \section{Computing demand for simulations}{ Assume at \eqn{n} locations in \eqn{d} dimensions a \eqn{v}-variate field has to be simulated. Let \deqn{f(n, d) = 2^d n \log(n)}{f(n, d) = 2^d * n * log(n)} The following table gives in particular the time and memory needed for the specific simulation method. \tabular{lllllll}{ \tab grid \tab \eqn{v} \tab \eqn{d} \tab time \tab memory \tab comments\cr \command{\link{RPcirculant}} \tab yes \tab any \tab \eqn{\le 13}{<=13} \tab\eqn{O(v^3f(n, d))} \tab \eqn{O(v^2f(n, d))}\tab \cr \tab no \tab any \tab \eqn{\le 13}{<=13} \tab \eqn{O(v^3 f(k, d))} \tab \eqn{O(v^2f(k, d))} \tab \eqn{k \sim }{k ~ }\command{\link[=RFoptions]{approx_step}}\eqn{{}^{-d}}{^{-d}}\cr \command{\link{RPcutoff}} \tab \tab \tab \tab \tab \tab see RPcirculant above \cr \command{\link{RPcoins}} \tab yes \tab \eqn{1} \tab \eqn{\le 4}{<=4} \tab \eqn{O(k n)}{O(k * n)} \tab\eqn{ O(n) }\tab \eqn{k \sim}{k ~ }\eqn{(lattice spacing)^{-d}} \cr \tab no \tab \eqn{1} \tab \eqn{\le 4}{<=4} \tab \eqn{O(k n)}{O(k * n)} \tab \eqn{O(n)} \tab \eqn{k} depends on the geometry \cr \command{\link{RPdirect}} \tab any\tab any\tab any \tab\eqn{O(1)..O(v^2 n^2)}{ O(v^2 * n^2)}\tab\eqn{ O(v^2 n^2)}{ O(v^2 * n^2)}\tab effort to investigate the covariance matrix, if \code{\link[=RFoptions]{matrix_methods}} is not specified (default)\cr \tab \tab \tab \tab\eqn{O(v n)}{ O(v * n)}\tab\eqn{ O(v n)}{ O(v * n)}\tab covariance matrix is diagonal \cr \tab \tab \tab \tab see \pkg{\link[spam:SPAM]{spam}} \tab \eqn{O(z + v n)}{O(z + v * n)}\tab covariance matrix is sparse matrix with \eqn{z} non-zeros\cr \tab\tab \tab \tab \eqn{O(v^3 n^3)}{O(v^3 * n^3)}\tab \eqn{O(v^2 n^2)}{O(v^2*n^2)}\tab arbitrary covariance matrix (preparation) \cr \tab\tab \tab \tab \eqn{O(v^2 n^2)}{O(v^2*n^2)}\tab \eqn{O(v^2 n^2)}{O(v^2*n^2)}\tab arbitrary covariance matrix (simulation)\cr \command{\link{RPgauss}} \tab any \tab any \tab any \tab \eqn{O(1) \ldots O(v^3n^3)}{O(1)..O(v^3*n^3)} \tab \eqn{O(1)\ldots O(n^2)}{O(1)..O(n^2)}\tab \bold{only} the selection process; \eqn{O(1)} if first method tried is successful \cr \command{\link{RPhyperplane}} \tab any \tab \eqn{1} \tab \eqn{2} \tab \eqn{O(n / s^d)} \tab \eqn{O(n / s^d)}\tab \eqn{s = }\code{\link[=RMmodels]{scale}}\cr \command{\link{RPintrinsic}} \tab \tab \tab \tab \tab \tab see RPcirculant above\cr \command{\link{RPnugget}} \tab any \tab any\tab any\tab \eqn{O(v n)} \tab \eqn{O(v n)} \tab\cr \command{\link{RPsequential}} \tab any\tab \eqn{1} \tab any \tab \eqn{O(S^3 b^3)}{O(S^3 * b^3)} \tab \eqn{O(S^2 b^2)}{O(S^2*b^2)} \tab \eqn{n=ST}{n = S * T}; \eqn{S} and \eqn{T} the number of spatial and temporal locations, respectively; \eqn{b = }\code{\link[=RPsequential]{back_steps}} (preparation) \cr \tab \tab \tab \tab \eqn{O(n S b^2)}{O(n * S * b^2)} \tab \eqn{O(S^2 b^2) + O(n)}{O(n)} \tab (simulation) \cr \command{\link{RPspectral}} \tab any \tab \eqn{1} \tab \eqn{\le 2}{<=2} \tab\eqn{O(C(d) n)}{O(C(d) * n)} \tab \eqn{ O(n) }\tab \eqn{C(d)} : large constant increasing in \eqn{d} \cr \command{\link{RPtbm}} \tab any \tab \eqn{1} \tab \eqn{\le 4}{<=4} \tab \eqn{ O(C(d) (n + L) }{ O(C(d) * (n + L))} \tab\eqn{ O(n + L)} \tab\eqn{C(d)} : large constant increasing in \eqn{d}; \eqn{L} is the effort needed to simulate on a line (or plane)\cr \command{\link{RPspecific}} \tab \tab \tab \tab \tab \tab \bold{only} the specific part \cr * * \command{\link{RMplus}}\tab any \tab any \tab any \tab O(v n) \tab O(v n) \tab\cr * * \command{\link{RMS}}\tab any \tab any \tab any \tab O(1) \tab O(v n) \tab\cr * * \command{\link{RMmult}}\tab any \tab any \tab any \tab O(v n) \tab O(v n) \tab\cr } } \section{Computing demand for interpolation}{ Assume \eqn{v}-variate data are given at \eqn{n} locations in \eqn{d} dimensions. To interpolate at \eqn{k} locations RandomFields needs \tabular{lllllll}{ grid \tab \eqn{v} \tab \eqn{d} \tab time \tab memory \tab comments\cr any\tab any\tab any \tab \eqn{O(1)..O(v^2 n^2)}{ O(v^2 * n^2)}\tab\eqn{ O(v^2 n^2)}{ O(v^2 * n^2)}\tab effort to investigate the covariance matrix, if \code{\link[=RFoptions]{matrix_methods}} is not specified (default) \cr \tab \tab \tab\eqn{O(v ^2 n k)}{ O(v^2 * n k)}\tab\eqn{ O(v (n + k))}{ O(v * (n + k))}\tab covariance matrix is diagonal \cr \tab \tab \tab see \pkg{\link[spam:SPAM]{spam}}+ O(v^2nk) \tab \eqn{O(z + v (n + k))}{O(z + v * (n + k))}\tab covariance matrix is sparse matrix with \eqn{z} non-zeros\cr \tab \tab \tab \eqn{O(v^3 n^3 + v^2nk)}{O(v^3*n^3 + v^2*n*k)}\tab \eqn{O(v^2 n^2 + v*k)}{O(v^2*n^2 + v*k)}\tab arbitrary covariance matrix } } \section{Computing demand for conditional simulation}{ Assume \eqn{v}-variate data are given at \eqn{n} locations \eqn{x_1,\ldots, x_n}{x_1,...,x_n} in \eqn{d} dimensions. To conditionally simulate at \eqn{k} locations \eqn{y_1,\ldots, y_k}{y_1,...,y_k}, the computing demand equals the sum of the demand for interpolating and the demand for simulating on the \eqn{k+n} locations. (Grid algorithms for simulating will apply if the \eqn{k} locations \eqn{y_1,\ldots, y_k}{y_1,...,y_k} are defined by a grid and the \eqn{n} locations \eqn{x_1,\ldots, x_n}{x_1,...,x_n} are a subset of \eqn{y_1,\ldots, y_k}{y_1,...,y_k}, a situation typical in image analysis.) } \references{ \itemize{ \item Chiles, J.-P. and Delfiner, P. (1999) \emph{Geostatistics. Modeling Spatial Uncertainty.} New York: Wiley. % \item Gneiting, T. and Schlather, M. (2004) % Statistical modeling with covariance functions. % \emph{In preparation.} \item Schlather, M. (1999) \emph{An introduction to positive definite functions and to unconditional simulation of random fields.} Technical report ST 99-10, Dept. of Maths and Statistics, Lancaster University. \item Schlather, M. (2010) On some covariance models based on normal scale mixtures. \emph{Bernoulli}, \bold{16}, 780-797. \item Schlather, M. (2011) Construction of covariance functions and unconditional simulation of random fields. In Porcu, E., Montero, J.M. and Schlather, M., \emph{Space-Time Processes and Challenges Related to Environmental Problems.} New York: Springer. % \item Schlather, M. (2002) Models for stationary max-stable % random fields. \emph{Extremes} \bold{5}, 33-44. \item Yaglom, A.M. (1987) \emph{Correlation Theory of Stationary and Related Random Functions I, Basic Results.} New York: Springer. \item Wackernagel, H. (2003) \emph{Multivariate Geostatistics.} Berlin: Springer, 3nd edition. } } \seealso{ \link{RP}, \command{\link{Other models}}, \command{\link{RMmodel}}, \command{\link{RFgetMethodNames}}, \command{\link{RFsimulateAdvanced}}. } \me \keyword{spatial} \examples{\dontshow{StartExample()} RFoptions(seed=0) ## *ANY* simulation will have the random seed 0; set ## RFoptions(seed=NA) to make them all random again set.seed(1) x <- runif(90, 0, 500) z <- RFsimulate(RMspheric(), x) z <- RFsimulate(RMspheric(), x, max_variab=10000) \dontshow{FinalizeExample()}}