Skip to main content
  • Home
  • Development
  • Documentation
  • Donate
  • Operational login
  • Browse the archive

swh logo
SoftwareHeritage
Software
Heritage
Archive
Features
  • Search

  • Downloads

  • Save code now

  • Add forge now

  • Help

https://github.com/cran/sns
11 November 2022, 14:07:59 UTC
  • Code
  • Branches (8)
  • Releases (0)
  • Visits
    • Branches
    • Releases
    • HEAD
    • refs/heads/master
    • refs/tags/0.9
    • refs/tags/0.9.1
    • refs/tags/1.0.0
    • refs/tags/1.1.0
    • refs/tags/1.1.1
    • refs/tags/1.1.2
    • refs/tags/1.2.2
    No releases to show
  • 97b07e0
  • /
  • R
  • /
  • sns.methods.R
Raw File Download
Take a new snapshot of a software origin

If the archived software origin currently browsed is not synchronized with its upstream version (for instance when new commits have been issued), you can explicitly request Software Heritage to take a new snapshot of it.

Use the form below to proceed. Once a request has been submitted and accepted, it will be processed as soon as possible. You can then check its processing state by visiting this dedicated page.
swh spinner

Processing "take a new snapshot" request ...

Permalinks

To reference or cite the objects present in the Software Heritage archive, permalinks based on SoftWare Hash IDentifiers (SWHIDs) must be used.
Select below a type of object currently browsed in order to display its associated SWHID and permalink.

  • content
  • directory
  • revision
  • snapshot
origin badgecontent badge Iframe embedding
swh:1:cnt:a7076c56185e6b45aa135a792382adb88fa178a7
origin badgedirectory badge Iframe embedding
swh:1:dir:3f9917389f75c8281afed647d11acde9ce210747
origin badgerevision badge
swh:1:rev:2e7e11042a8cb40f5236f24c36f7bf7e5a64901a
origin badgesnapshot badge
swh:1:snp:218ce733af7de6247148caa3cf8c71ef1c66e614
Citations

This interface enables to generate software citations, provided that the root directory of browsed objects contains a citation.cff or codemeta.json file.
Select below a type of object currently browsed in order to generate citations for them.

  • content
  • directory
  • revision
  • snapshot
Generate software citation in BibTex format (requires biblatex-software package)
Generating citation ...
Generate software citation in BibTex format (requires biblatex-software package)
Generating citation ...
Generate software citation in BibTex format (requires biblatex-software package)
Generating citation ...
Generate software citation in BibTex format (requires biblatex-software package)
Generating citation ...
Tip revision: 2e7e11042a8cb40f5236f24c36f7bf7e5a64901a authored by Alireza Mahani on 08 September 2016, 07:33:54 UTC
version 1.1.1
Tip revision: 2e7e110
sns.methods.R
######################################
#                                    #
#  Methods for sns objects           #
#                                    #
######################################

# convenience function for partitioning the state space
sns.make.part <- function(K, nsubset, method = "naive") {
  if (method != "naive") stop("invalid method") #TODO: consider implementing more sophisticated partitioning methods
  if (nsubset > K) stop("number of partitions cannot exceed state space dimensionality")
  
  # deterimining number of coordinates per subset (nvec)
  nvec <- rep(0, nsubset)
  nleft <- K
  c <- 1
  while (nleft > 0) {
    nvec[c] <- nvec[c] + 1
    nleft <- nleft - 1
    c <- c %% nsubset + 1
  }

  # assigning coordinates to subsets
  ret <- list()
  c <- 0
  for (n in 1:nsubset) {
    ret[[n]] <- as.integer(c + 1:nvec[n])
    c <- c + nvec[n]
  }
  if (sns.check.part(ret, K)) return (ret)
  else stop("unexpectedly invalid state space partitioning")
}

# function for checking that state space partitioning is valid
# (mutually-exclusive and collectively-exhaustive)
sns.check.part <- function(part, K) {
  return (identical(as.integer(sort(unlist(part))), 1:K))
}

# validating twice-differentiability and concavity of log-density
sns.check.logdensity <- function(x, fghEval
  #, numderiv = 0
  , numderiv.method = c("Richardson", "complex"), numderiv.args = list()
  , blocks = append(list(1:length(x)), as.list(1:length(x)))
  , dx = rep(1.0, length(x))
  , nevals = 100, negdef.tol = 1e-8
  , ...) {
  dx <- rep(dx, length(x)) # in case scalar dx is upplied by user
  fgh.ini <- fghEval(x, ...)
    
  ret <- list(check.ld.struct = NA, numderiv = NA, check.length.g = NA, check.dim.h = NA
              , x.mat = NA, fgh.ini = NA, fgh.num.ini = NA
              #, fgh.list = NA, fgh.num.list = NA
              , f.vec = NA, g.mat = NA, g.mat.num = NA, h.array = NA, h.array.num = NA
              , t.evals = NA, t.num.eval = NA
              , is.g.num.finite = NA, is.h.num.finite = NA
              , is.g.finite = NA, is.h.finite = NA
              , g.diff.max = NA, h.diff.max = NA
              , is.negdef.num = NA, is.negdef = NA
              )
  attr(ret, "class") <- "sns.check.logdensity"
  
  # determine if analytical derivatives are provided
  # numderiv = 0: g,h analytical
  # numderiv = 1: g analytical
  # numderiv = 2: no analytical
  is.fgh.list <- is.list(fgh.ini)
  if (is.fgh.list) {
    fgh.list.names <- names(fgh.ini)
    have.fgh <- c("f", "g", "h") %in% fgh.list.names
    if (all(have.fgh)) { # no numerical differentiation needed
      ret$check.ld.struct <- TRUE
      ret$numderiv <- 0
    } else if (all(have.fgh[1:2])) { # numerical gradient needed
      ret$check.ld.struct <- TRUE
      ret$numderiv <- 1
    } else {
      ret$check.ld.struct <- FALSE
      return (ret)
    }
  } else { # need numerical gradient and Hessian
    ret$check.ld.struct <- TRUE
    ret$numderiv <- 2
  }
  
  # fghEval with numerical differentiation
  numderiv.method <- match.arg(numderiv.method)
  if (ret$numderiv == 2) {
    fghEval.num <- function(x, ...) {
      f <- fghEval(x, ...)
      g <- grad(func = fghEval, x = x, ..., method = numderiv.method, method.args = numderiv.args)
      h <- hessian(func = fghEval, x = x, ..., method = numderiv.method, method.args = numderiv.args)
      return (list(f = f, g = g, h = h))
    }
  } else {
    fghEval.num <- function(x, ...) {
      f <- fghEval(x, ...)$f
      g <- grad(func = function(x, ...) fghEval(x, ...)$f, x = x, ..., method = numderiv.method, method.args = numderiv.args)
      h <- hessian(func = function(x, ...) fghEval(x, ...)$f, x = x, ..., method = numderiv.method, method.args = numderiv.args)
      return (list(f = f, g = g, h = h))
    }
  }
  
  fgh.num.ini <- fghEval.num(x, ...)
  
  #return (fgh.num.ini)
  
  # check dimensional consistency of gradient and Hessian
  K <- length(x)
  if (ret$numderiv == 0) {
    ret$check.length.g <- length(fgh.ini$g) == K
    ret$check.dim.h <- nrow(fgh.ini$h) == K && ncol(fgh.ini$h) == K
  } else if (ret$numderiv == 1) {
    ret$check.length.g <- length(fgh.ini$g) == K
    ret$check.dim.h <- nrow(fgh.num.ini$h) == K && ncol(fgh.num.ini$h) == K
  } else if (ret$numderiv == 2) {
    ret$check.length.g <- length(fgh.num.ini$g) == K
    ret$check.dim.h <- nrow(fgh.num.ini$h) == K && ncol(fgh.num.ini$h) == K
  }
  
  ret$x.mat <- sapply(1:K, function(k) runif(nevals, min = x[k] - 0.5 * dx[k], max = x[k] + 0.5 * dx[k]))
  ret$x.mat[1, ] <- x
  
  t <- proc.time()[3]
  fgh.list <- lapply(1:nevals, function(n) fghEval(ret$x.mat[n, ], ...))
  ret$t.evals <- proc.time()[3] - t
  
  t <- proc.time()[3]
  fgh.num.list <- lapply(1:nevals, function(n) fghEval.num(ret$x.mat[n, ], ...))
  ret$t.num.evals <- proc.time()[3] - t
  
  # twice-differentiability
  f.vec <- sapply(fgh.num.list, function(u) u$f)
  index.f.finite <- which(is.finite(f.vec))
  n.f.finite <- length(index.f.finite)
  ret$f.vec <- f.vec
  
  g.mat.num <- t(sapply(fgh.num.list, function(u) u$g))
  ret$g.mat.num <- g.mat.num
  ret$is.g.num.finite <- all(is.finite(g.mat.num[index.f.finite, ]))
  
  h.array.num <- array(t(sapply(fgh.num.list, function(u) u$h)), dim = c(nevals, K, K))
  ret$h.array.num <- h.array.num
  ret$is.h.num.finite <- all(is.finite(h.array.num[index.f.finite, , ]))
  
  # closeness of analytical and numerical results (we need better metrics of difference)
  if (ret$numderiv < 2) {
    g.mat <- t(sapply(fgh.list, function(u) u$g))
    ret$g.mat <- g.mat
    ret$is.g.finite <- all(is.finite(g.mat[index.f.finite, ]))
    ret$g.diff.max <- max(sapply(1:n.f.finite, function(i)
      sqrt(sum((g.mat[index.f.finite[i], ] - g.mat.num[index.f.finite[i], ])^2))/sqrt(sum(g.mat[index.f.finite[i], ]^2))))
  }
  if (ret$numderiv == 0) {
    h.array <- array(t(sapply(fgh.list, function(u) u$h)), dim = c(nevals, K, K))
    ret$h.array <- h.array
    ret$is.h.finite <- all(is.finite(h.array[index.f.finite, , ]))
    ret$h.diff.max <- max(sapply(1:n.f.finite, function(i)
      norm(h.array[index.f.finite[i], , ] - h.array.num[index.f.finite[i], , ], type = "F")/norm(h.array[index.f.finite[i], , ], type = "F")))
  }
  
  # concavity (negative definiteness)
  sns.is.positive.definite <- function(A, tol = 1e-8) all(eigen(A)$values > tol)
  
  ret$is.negdef.num <- sapply(1:length(blocks), function(i) all(sapply(1:n.f.finite, function(u) {
    h.tmp <- h.array.num[index.f.finite[u], , ]
    sns.is.positive.definite(-h.tmp[blocks[[i]], blocks[[i]], drop = F], tol = negdef.tol)
  })))
  
  if (ret$numderiv == 0) {
    ret$is.negdef <- sapply(1:length(blocks), function(i) all(sapply(1:n.f.finite, function(u) {
      h.tmp <- h.array[index.f.finite[u], , ]
      sns.is.positive.definite(-h.tmp[blocks[[i]], blocks[[i]], drop = F], tol = negdef.tol)
    })))
  }
  
  return (ret)
}

print.sns.check.logdensity <- function(x, ...) {
  sns.TF.to.YesNo <- function(x) ifelse(x, "Yes", "No")
  if (!x$check.ld.struct) {
    cat("log-density output list has invalid names\n")
    return (invisible(NULL))
  }
  numderiv <- x$numderiv
  #cat("log-density is valid\n")
  cat("number of finite function evals:", length(which(is.finite(x$f.vec))), "(out of ", length(x$f.vec), ")\n")
  cat("recommended numderiv value:", numderiv, "\n")
  cat("is length of gradient vector correct?", sns.TF.to.YesNo(x$check.length.g), "\n")
  cat("are dims of Hessian matrix correct?", sns.TF.to.YesNo(x$check.dim.h), "\n")
  cat("is numerical gradient finite?", sns.TF.to.YesNo(x$is.g.num.finite), "\n")
  cat("is numerical Hessian finite?", sns.TF.to.YesNo(x$is.h.num.finite), "\n")
  if (numderiv < 2) {
    cat("is analytical gradient finite?", sns.TF.to.YesNo(x$is.g.finite), "\n")
    cat("maximum relative diff in gradient:", x$g.diff.max, "\n")
  }
  if (numderiv == 0) {
    cat("is analytical Hessian finite?", sns.TF.to.YesNo(x$is.h.finite), "\n")
    cat("maximum relative diff in Hessian:", x$h.diff.max, "\n")
  }
  cat("is numeric Hessian (block) negative-definite?", sns.TF.to.YesNo(x$is.negdef.num), "\n")
  if (numderiv == 0) {
    cat("is analytical Hessian (block) negative-definite?", sns.TF.to.YesNo(x$is.negdef), "\n")
  }
  
  return (invisible(NULL))
}

# predict methods
predict.sns <- function(object, fpred
  , nburnin = max(nrow(object)/2, attr(object, "nnr"))
  , end = nrow(object), thin = 1, ...) {

  niter <- nrow(object)
  nnr <- attr(object, "nnr")
  nmcmc <- niter - nnr
  if (nburnin < nnr) warning("it is strongly suggested that burnin period includes NR iterations (which are not valid MCMC iterations)")
  myseq <- seq(from = nburnin + 1, to = end, by = thin)

  pred <- apply(object[myseq, ], 1, fpred, ...)
  class(pred) <- "predict.sns"
  return (pred)
}
summary.predict.sns <- function(object, quantiles = c(0.025, 0.5, 0.975)
  , ess.method = c("coda", "ise"), ...) {
  smp.mean <- rowMeans(object)
  smp.sd <- apply(object, 1, sd)
  smp.ess <- ess(t(object), method = ess.method[1])
  smp.quantiles <- t(apply(object, 1, quantile, probs = quantiles))
  ret <- list(mean = smp.mean, sd = smp.sd, ess = smp.ess, quantiles = smp.quantiles, nseq = ncol(object))
  class(ret) <- "summary.predict.sns"
  return (ret)
}
print.summary.predict.sns <- function(x, ...) {
  cat("prediction sample statistics:\n")
  cat("\t(nominal sample size: ", x$nseq, ")\n", sep="")
  stats <- cbind(x$mean, x$sd, x$ess, x$quantiles)
  colnames(stats)[1:3] <- c("mean", "sd", "ess")
  rownames(stats) <- c(1:length(x$mean))
  printCoefmat(stats[1:min(length(x$mean), 6), ])
  if (length(x$mean) > 6) cat("...\n")
}

# print method 
print.sns <- function(x, ...) {
  cat("Stochastic Newton Sampler (SNS)\n")
  cat("state space dimensionality: ", ncol(x), "\n")
  if (!is.null(attr(x, "part"))) cat("state space partitioning: ", attr(x, "part"), " subsets\n")
  cat("total iterations: ", nrow(x), "\n")
  cat("\t(initial) NR iterations:", attr(x, "nnr"), "\n")
  cat("\t(final) MCMC iterations:", nrow(x) - attr(x, "nnr"), "\n")
}

# summary methods
# primary output:
# 1) acceptance rate
# 2) mean relative deviation (if available)
# 3) sample statistics (mean, sd, quantiles, ess, pval) (if available)
summary.sns <- function(object, quantiles = c(0.025, 0.5, 0.975)
  , pval.ref = 0.0, nburnin = max(nrow(object)/2, attr(object, "nnr"))
  , end = nrow(object), thin = 1, ess.method = c("coda", "ise"), ...) {
  K <- ncol(object)
  nnr <- attr(object, "nnr")
  if (nburnin < nnr) warning("it is strongly suggested that burnin period includes NR iterations (which are not valid MCMC iterations)")
  
  # number of subsets in state space partitioning
  npart <- max(1, length(attr(object, "part")))
    
  # average relative deviation of function value from quadratic approximation (post-burnin)
  if (!is.null(attr(object, "reldev"))) reldev.mean <- mean(attr(object, "reldev"), na.rm = TRUE)
  else reldev.mean <- NA
  
  nsmp <- end - nburnin
  if (nsmp > 0) {
    # average acceptance rate for MH transition proposals
    accept.rate <- sum(attr(object, "accept")[nburnin + 1:nsmp, ]) / length(attr(object, "accept")[nburnin + 1:nsmp, ])
    
    myseq <- seq(from = nburnin + 1, to = end, by = thin)
    nseq <- length(myseq)
    
    smp.mean <- colMeans(object[myseq, ])
    smp.sd <- apply(object[myseq, ], 2, sd)
    smp.ess <- ess(object[myseq, ], method = ess.method[1])
    smp.quantiles <- t(apply(object[myseq, ], 2, quantile, probs = quantiles))
    smp.pval <- apply(object[myseq, ], 2, sns.calc.pval, ref = pval.ref, na.rm = FALSE)
    
  } else {
    accept.rate <- NA
    nseq <- 0
    
    smp.mean <- NA
    smp.sd <- NA
    smp.ess <- NA
    smp.quantiles <- NA
    smp.pval <- NA
  }
  ret <- list(K = K, nnr = nnr, nburnin = nburnin, end = end, thin = thin
    , niter = nrow(object), nsmp = nsmp, nseq = nseq, npart = npart
    , accept.rate = accept.rate, reldev.mean = reldev.mean
    , pval.ref = pval.ref, ess.method = ess.method
    , smp = list(mean = smp.mean, sd = smp.sd, ess = smp.ess, quantiles = smp.quantiles, pval = smp.pval))
  class(ret) <- "summary.sns"
  return (ret)
}

print.summary.sns <- function(x, ...) {
  cat("Stochastic Newton Sampler (SNS)\n")
  cat("state space dimensionality: ", x$K, "\n")
  if (x$npart > 1) cat("state space partitioning: ", x$npart, " subsets\n")
  cat("total iterations: ", x$niter, "\n")
  cat("\tNR iterations: ", x$nnr, "\n")
  cat("\tburn-in iterations: ", x$nburnin, "\n")
  cat("\tend iteration: ", x$end, "\n")
  cat("\tthinning interval: ", x$thin, "\n")
  cat("\tsampling iterations (before thinning): ", x$nsmp, "\n")
  #cat("\tsampling iterations (after thinning): ", x$nseq, "\n")
  cat("acceptance rate: ", x$accept.rate, "\n")
  if (!is.na(x$reldev.mean)) cat("\tmean relative deviation from quadratic approx:", format(100*x$reldev.mean, digits=3), "% (post-burnin)\n")
  if (x$nsmp > 0) {
    cat("sample statistics:\n")
    cat("\t(nominal sample size: ", x$nseq, ")\n", sep="")
    stats <- cbind(x$smp$mean, x$smp$sd, x$smp$ess, x$smp$quantiles, x$smp$pval)
    colnames(stats)[c(1:3, 4 + ncol(x$smp$quantiles))] <- c("mean", "sd", "ess", "p-val")
    rownames(stats) <- c(1:x$K)
    printCoefmat(stats[1:min(x$K, 6), ], P.values = TRUE, has.Pvalue = TRUE)
    if (x$K > 6) cat("...\n")
    cat("summary of ess:\n")
    print(summary(x$smp$ess))
  }
}

# plot method
plot.sns <- function(x, nburnin = max(nrow(x)/2, attr(x, "nnr"))
  , select = if (length(x) <= 10) 1:5 else 1, ...) {
  init <- attr(x, "init")
  lp.init <- attr(x, "lp.init")
  lp <- attr(x, "lp")
  
  # in all cases, vertical line delineates transition from nr to mcmc mode
  K <- ncol(x)
  niter <- nrow(x)
  nnr <- attr(x, "nnr")
  if (nburnin < nnr) warning("it is strongly suggested that burnin period includes NR iterations (which are not valid MCMC iterations)")
  
  # log-probability trace plot
  if (1 %in% select) {
    plot(0:niter, c(lp.init, lp), type = "l"
      , xlab = "iter", ylab = "log-probability", main = "Log-Probability Trace Plot")
    if (nnr > 0 && nnr < niter) abline(v = nnr + 0.5, lty = 2, col = "red")
  }
  
  # state vector trace plots
  if (2 %in% select) {
    for (k in 1:K) {
      plot(0:niter, c(init[k], x[, k]), type = "l"
        , xlab = "iter", ylab = paste("x[", k, "]", sep = ""), main = "State Variable Trace Plot")
      if (nnr > 0 && nnr < niter) abline(v = nnr + 0.5, lty = 2, col = "red")
    }
  }
  
  if (nburnin < niter) {

    if (3 %in% select) {
      # effective sample size (horizontal line is maximum possible effective sample size)
      my.ess <- ess(x[(nburnin + 1):niter, ])
      plot(1:K, my.ess, xlab = "k", ylab = "effective sample size", ylim = c(0, niter - nburnin), main = "Effective Sample Size by Coordinate")
      abline(h = niter - nburnin, lty = 2, col = "red")
    }
    
    if (4 %in% select) {
      # state vector (univariate) histograms
      K <- ncol(x)
      for (k in 1:K) {
        hist(x[(nburnin + 1):niter, k], xlab = paste("x[", k, "]", sep = ""), main = "State Variable Histogram (post-burnin)")
        abline(v = mean(x[(nburnin + 1):niter, k]), lty = 2, col = "red")
      }
    }
  
    if (5 %in% select) {
      # state vector (univariate) autocorrelation plots
      K <- ncol(x)
      for (k in 1:K) {
        acf(x[(nburnin + 1):niter, k], xlab = paste("x[", k, "]", sep = ""), main = "State Variable Autocorrelation Plot (post-burnin)")
      }
    }

  }
}

sns.calc.pval <- function(x, ref=0.0, na.rm = FALSE) { # add flag for one-sided vs. two-sided
  if (na.rm) x <- x[!is.na(x)]
  bigger <- median(x)>ref
  if (sd(x)<.Machine$double.eps) {
    ret <- NA
  } else {
    ret <- max(1/length(x), 2*length(which(if (bigger) x<ref else x>ref))/length(x)) # TODO: justify minimum value
  }
  attr(ret, "bigger") <- bigger
  return (ret)
}

# convenience function for numerical augmentation of a log-density
sns.fghEval.numaug <- function(fghEval, numderiv = 0
  , numderiv.method = c("Richardson", "simple"), numderiv.args = list()) {
  numderiv <- as.integer(numderiv)
  if (numderiv > 0) {
    numderiv.method <- match.arg(numderiv.method)
    if (numderiv == 1) { # we need numeric hessian
      fghEval.int <- function(x, ...) {
        fg <- fghEval(x, ...)
        h <- hessian(func = function(x, ...) fghEval(x, ...)$f, x = x, ..., method = numderiv.method, method.args = numderiv.args)
        return (list(f = fg$f, g = fg$g, h = h))
      }
    } else { # we need numeric gradient and hessian
      fghEval.int <- function(x, ...) {
        f <- fghEval(x, ...)
        g <- grad(func = fghEval, x = x, ..., method = numderiv.method, method.args = numderiv.args)
        h <- hessian(func = fghEval, x = x, ..., method = numderiv.method, method.args = numderiv.args)
        return (list(f = f, g = g, h = h))
      }
    }
  } else {
    fghEval.int <- fghEval
  }
}


Software Heritage — Copyright (C) 2015–2025, The Software Heritage developers. License: GNU AGPLv3+.
The source code of Software Heritage itself is available on our development forge.
The source code files archived by Software Heritage are available under their own copyright and licenses.
Terms of use: Archive access, API— Contact— JavaScript license information— Web API

back to top