Skip to main content
  • Home
  • Development
  • Documentation
  • Donate
  • Operational login
  • Browse the archive

swh logo
SoftwareHeritage
Software
Heritage
Archive
Features
  • Search

  • Downloads

  • Save code now

  • Add forge now

  • Help

https://github.com/jyhmiinlin/pynufft
07 November 2025, 22:15:22 UTC
  • Code
  • Branches (16)
  • Releases (0)
  • Visits
    • Branches
    • Releases
    • HEAD
    • refs/heads/gh-pages
    • refs/heads/master
    • refs/tags/0.3.1.7
    • refs/tags/0.3.1.8
    • refs/tags/2020.0.0
    • refs/tags/2020.1.2
    • refs/tags/2020.2.1
    • refs/tags/2020.2.3
    • refs/tags/2022.2.1
    • refs/tags/2022.2.2
    • refs/tags/2022.2.3
    • refs/tags/2022.2.3rc1
    • refs/tags/2024.1.2
    • refs/tags/v0.3.1.8
    • refs/tags/v2020.0.0
    • refs/tags/v2020.1.2
    No releases to show
  • 452b985
  • /
  • nufft
  • /
  • __init__.py
Raw File Download
Take a new snapshot of a software origin

If the archived software origin currently browsed is not synchronized with its upstream version (for instance when new commits have been issued), you can explicitly request Software Heritage to take a new snapshot of it.

Use the form below to proceed. Once a request has been submitted and accepted, it will be processed as soon as possible. You can then check its processing state by visiting this dedicated page.
swh spinner

Processing "take a new snapshot" request ...

To reference or cite the objects present in the Software Heritage archive, permalinks based on SoftWare Hash IDentifiers (SWHIDs) must be used.
Select below a type of object currently browsed in order to display its associated SWHID and permalink.

  • content
  • directory
  • revision
  • snapshot
origin badgecontent badge Iframe embedding
swh:1:cnt:a75304e5b39b6b3e4cda9c1a44d6c09d072e088b
origin badgedirectory badge Iframe embedding
swh:1:dir:fb2864e441f6bde64049cb9e1b35cc15b6f7060b
origin badgerevision badge
swh:1:rev:14452db6dff408ebfb342a6e813d8f44d7d9373e
origin badgesnapshot badge
swh:1:snp:9e6a516ae08502c5b52293d1d32fc5bd59ed3b2a

This interface enables to generate software citations, provided that the root directory of browsed objects contains a citation.cff or codemeta.json file.
Select below a type of object currently browsed in order to generate citations for them.

  • content
  • directory
  • revision
  • snapshot
Generate software citation in BibTex format (requires biblatex-software package)
Generating citation ...
Generate software citation in BibTex format (requires biblatex-software package)
Generating citation ...
Generate software citation in BibTex format (requires biblatex-software package)
Generating citation ...
Generate software citation in BibTex format (requires biblatex-software package)
Generating citation ...
Tip revision: 14452db6dff408ebfb342a6e813d8f44d7d9373e authored by Jyh-Miin Lin on 05 October 2022, 01:54:28 UTC
same as 2022.2.3rc3. Fixed pinv2 -> pinv
Tip revision: 14452db
__init__.py
"""
NUFFT class
=======================================
"""
from __future__ import absolute_import
import numpy
import warnings
import scipy.sparse
import numpy.fft
#import scipy.signal
import scipy.linalg
import scipy.special
from functools import wraps as _wraps

from importlib import import_module
# from ..linalg.nufft_cpu import NUFFT_cpu
# from ..linalg.nufft_hsa import NUFFT_hsa

# import torch
# def sparse_mx_to_torch_sparse_tensor(sparse_mx):
#     """Convert a scipy sparse matrix to a torch sparse tensor.
#
#        https://github.com/DSE-MSU/DeepRobust
#     """
#     sparse_mx = sparse_mx.tocoo().astype(numpy.complex64)
#     indices = torch.from_numpy(
#         numpy.vstack((sparse_mx.row, sparse_mx.col)).astype(numpy.int64))
#     values = torch.from_numpy(sparse_mx.data)
#     shape = torch.Size(sparse_mx.shape)
#     return torch.sparse.FloatTensor(indices, values, shape) 


def push_cuda_context(hsa_method):
    """
    Decorator: Push cude context to the top of the stack for current use
    Add @push_cuda_context before the methods of NUFFT_device()
    """
    @_wraps(hsa_method)
    def wrapper(*args, **kwargs):
        try:
            args[0].thr._context.push()
        except:
            pass
        return hsa_method(*args, **kwargs)
    return wrapper

class NUFFT_cupy:
    """
    A tentative torch interface
    """
    
    
    def __init__(self):
        self.dtype = numpy.complex64  # : initial value: numpy.complex64
        self.debug = 0  #: initial value: 0
        self.Nd = ()  # : initial value: ()
        self.Kd = ()  # : initial value: ()
        self.Jd = ()  #: initial value: ()
        self.ndims = 0  # : initial value: 0
        self.ft_axes = ()  # : initial value: ()
        self.batch = None  # : initial value: None
        # self.processor='torch'
        self.cupy = import_module('cupy')
        

    def plan(self, om, Nd, Kd, Jd):
        """
        Plan the NUFFT object with the geometry provided.
    
        :param om: The M off-grid locates in the frequency domain,
                    which is normalized between [-pi, pi]
        :param Nd: The matrix size of the equispaced image.
                   Example: Nd=(256,256) for a 2D image;
                             Nd = (128,128,128) for a 3D image
        :param Kd: The matrix size of the oversampled frequency grid.
                   Example: Kd=(512,512) for 2D image;
                            Kd = (256,256,256) for a 3D image
        :param Jd: The interpolator size.
                   Example: Jd=(6,6) for 2D image;
                            Jd = (6,6,6) for a 3D image
        :param ft_axes: (Optional) The axes for Fourier transform.
                        The default is all axes if 'None' is given.
        :param batch: (Optional) Batch mode.
                     If the batch is provided, the last appended axis is the number
                     of identical NUFFT to be transformed.
                     The default is 'None'.
        :type om: numpy.float array, matrix size = M * ndims
        :type Nd: tuple, ndims integer elements.
        :type Kd: tuple, ndims integer elements.
        :type Jd: tuple, ndims integer elements.
        :type ft_axes: None, or tuple with optional integer elements.
        :returns: 0
        :rtype: int, float
    
        :ivar Nd: initial value: Nd
        :ivar Kd: initial value: Kd
        :ivar Jd: initial value: Jd
        :ivar ft_axes: initial value: None
    
        :Example:
    
        >>> from pynufft import NUFFT
        >>> NufftObj = NUFFT()
        >>> NufftObj.plan(om, Nd, Kd, Jd)
    
        or
    
        >>> NufftObj.plan(om, Nd, Kd, Jd, ft_axes)
    
        """
        from ..src._helper import helper#, helper1
        self.ndims = len(Nd)  # : initial value: len(Nd)
        ft_axes = tuple(jj for jj in range(0, self.ndims))
        self.st = helper.plan(om, Nd, Kd, Jd, ft_axes=ft_axes,
                              format='CSR')
    
        self.Nd = self.st['Nd']  # backup
        self.Kd = self.st['Kd']
        # backup
        # self.sn = numpy.asarray(self.st['sn'].astype(self.dtype), order='C')
    
    
        self.sn = self.cupy.asarray(numpy.asarray(self.st['sn'].astype(self.dtype), order='C'))
    
        
        self.cupy_sp = self.cupy._cupyx.scipy.sparse.csr_matrix(self.st['p'])
        # torch.sparse.FloatTensor(i, v, torch.Size(shape))#.to_dense()
        
        # i2 = torch.LongTensor(numpy.vstack((coo.col, coo.row)))
        self.cupy_spH = self.cupy._cupyx.scipy.sparse.csr_matrix(self.st['p'].getH().copy())
        # self.spH = torch.sparse.FloatTensor(i2, v, torch.Size((shape[1], shape[0])))
        
        
        # self.spH = (self.st['p'].getH().copy()).tocsr()
        
        # self.Kdprod = numpy.int32(numpy.prod(self.st['Kd']))
        # self.Jdprod = numpy.int32(numpy.prod(self.st['Jd']))
        # del self.st['p'], self.st['sn']
        #
        # self.NdCPUorder, self.KdCPUorder, self.nelem = helper.preindex_copy(
        #     self.st['Nd'],
        #     self.st['Kd'])
    #     self.volume = {}
    #     self.volume['cpu_coil_profile'] = numpy.ones(self.multi_Nd)
    
        return 0
    def forward(self, x):
        xx = self.x2xx(x)
        k = self.xx2k(xx)
        y = self.k2y(k)
        # y = self.k2y(self.xx2k(self.x2xx))
        return y
    def adjoint(self, y):
        k = self.y2k(y)
        xx = self.k2xx(k)
        x = self.xx2x(xx)
        # x = self.xx2x(self.k2xx(self.y2k(y)))
        return x
    def x2xx(self, x):
        xx = self.sn*x
        # xx = torch.mul(x, self.sn)
        return xx
    
    def xx2k(self,xx):
        k = self.cupy.zeros(self.Kd, dtype=numpy.complex64)
        k[tuple(slice(self.Nd[jj]) for jj in range(0, self.ndims))] = xx
        k = self.cupy.fft.fftn(k)
        return k
    
    def k2y(self, k):
        torch_y = self.cupy_sp.dot(k.flatten())
        return torch_y
    
    def y2k(self, cupy_y):
        k = self.cupy.reshape(self.cupy_spH.dot(cupy_y), self.Kd)
        return k
    
    def k2xx(self, k):
        xx = self.cupy.fft.ifftn(k)[tuple(slice(self.Nd[jj]) for jj in range(0, self.ndims))] 
        return xx
    
    def xx2x(self,xx):
        return self.x2xx(xx)
    


class NUFFT_torch:
    """
    A tentative torch interface
    """
    
    
    def __init__(self):
        self.dtype = numpy.complex64  # : initial value: numpy.complex64
        self.debug = 0  #: initial value: 0
        self.Nd = ()  # : initial value: ()
        self.Kd = ()  # : initial value: ()
        self.Jd = ()  #: initial value: ()
        self.ndims = 0  # : initial value: 0
        self.ft_axes = ()  # : initial value: ()
        self.batch = None  # : initial value: None
        # self.processor='torch'
        self.torch = import_module('torch')
    def sparse_mx_to_torch_sparse_tensor(self, sparse_mx):
        """Convert a scipy sparse matrix to a torch sparse tensor.
        
           https://github.com/DSE-MSU/DeepRobust
        """
        sparse_mx = sparse_mx.tocoo().astype(numpy.complex64)
        indices = self.torch.from_numpy(
            numpy.vstack((sparse_mx.row, sparse_mx.col)).astype(numpy.int64))
        values = self.torch.from_numpy(sparse_mx.data)
        shape = self.torch.Size(sparse_mx.shape)
        return self.torch.sparse.FloatTensor(indices, values, shape) 

    def plan(self, om, Nd, Kd, Jd):
        """
        Plan the NUFFT object with the geometry provided.
    
        :param om: The M off-grid locates in the frequency domain,
                    which is normalized between [-pi, pi]
        :param Nd: The matrix size of the equispaced image.
                   Example: Nd=(256,256) for a 2D image;
                             Nd = (128,128,128) for a 3D image
        :param Kd: The matrix size of the oversampled frequency grid.
                   Example: Kd=(512,512) for 2D image;
                            Kd = (256,256,256) for a 3D image
        :param Jd: The interpolator size.
                   Example: Jd=(6,6) for 2D image;
                            Jd = (6,6,6) for a 3D image
        :param ft_axes: (Optional) The axes for Fourier transform.
                        The default is all axes if 'None' is given.
        :param batch: (Optional) Batch mode.
                     If the batch is provided, the last appended axis is the number
                     of identical NUFFT to be transformed.
                     The default is 'None'.
        :type om: numpy.float array, matrix size = M * ndims
        :type Nd: tuple, ndims integer elements.
        :type Kd: tuple, ndims integer elements.
        :type Jd: tuple, ndims integer elements.
        :type ft_axes: None, or tuple with optional integer elements.
        :returns: 0
        :rtype: int, float
    
        :ivar Nd: initial value: Nd
        :ivar Kd: initial value: Kd
        :ivar Jd: initial value: Jd
        :ivar ft_axes: initial value: None
    
        :Example:
    
        >>> from pynufft import NUFFT
        >>> NufftObj = NUFFT()
        >>> NufftObj.plan(om, Nd, Kd, Jd)
    
        or
    
        >>> NufftObj.plan(om, Nd, Kd, Jd, ft_axes)
    
        """
        from ..src._helper import helper#, helper1
        self.ndims = len(Nd)  # : initial value: len(Nd)
        ft_axes = tuple(jj for jj in range(0, self.ndims))
        self.st = helper.plan(om, Nd, Kd, Jd, ft_axes=ft_axes,
                              format='CSR')
    
        self.Nd = self.st['Nd']  # backup
        self.Kd = self.st['Kd']
        # backup
        # self.sn = numpy.asarray(self.st['sn'].astype(self.dtype), order='C')
    
    
        self.sn = self.torch.from_numpy(numpy.asarray(self.st['sn'].astype(self.dtype), order='C'))
    
        
        self.torch_sp = self.sparse_mx_to_torch_sparse_tensor(self.st['p'])
        # torch.sparse.FloatTensor(i, v, torch.Size(shape))#.to_dense()
        
        # i2 = torch.LongTensor(numpy.vstack((coo.col, coo.row)))
        self.torch_spH = self.sparse_mx_to_torch_sparse_tensor(self.st['p'].getH().copy())
        # self.spH = torch.sparse.FloatTensor(i2, v, torch.Size((shape[1], shape[0])))
        
        
        # self.spH = (self.st['p'].getH().copy()).tocsr()
        
        # self.Kdprod = numpy.int32(numpy.prod(self.st['Kd']))
        # self.Jdprod = numpy.int32(numpy.prod(self.st['Jd']))
        # del self.st['p'], self.st['sn']
        #
        # self.NdCPUorder, self.KdCPUorder, self.nelem = helper.preindex_copy(
        #     self.st['Nd'],
        #     self.st['Kd'])
    #     self.volume = {}
    #     self.volume['cpu_coil_profile'] = numpy.ones(self.multi_Nd)
    
        return 0
    def forward(self, x):
        xx = self.x2xx(x)
        k = self.xx2k(xx)
        y = self.k2y(k)
        # y = self.k2y(self.xx2k(self.x2xx))
        return y
    def adjoint(self, y):
        k = self.y2k(y)
        xx = self.k2xx(k)
        x = self.xx2x(xx)
        # x = self.xx2x(self.k2xx(self.y2k(y)))
        return x
    def x2xx(self, x):
        xx = self.sn*x
        # xx = torch.mul(x, self.sn)
        return xx
    
    def xx2k(self,xx):
        k = self.torch.zeros(self.Kd, dtype=self.torch.complex64)
        k[list(slice(self.Nd[jj]) for jj in range(0, self.ndims))] = xx
        k = self.torch.fft.fftn(k)
        return k
    
    def k2y(self, k):
        torch_y = self.torch_sp.mv(self.torch.flatten(k))
        return torch_y
    
    def y2k(self, torch_y):
        k = self.torch.reshape(self.torch_spH.mv(torch_y), self.Kd)
        return k
    
    def k2xx(self, k):
        xx = self.torch.fft.ifftn(k)[list(slice(self.Nd[jj]) for jj in range(0, self.ndims))] 
        return xx
    
    def xx2x(self,xx):
        return self.x2xx(xx)
    

class NUFFT_tf_eager:
    """
    A tentative torch interface
    """
    
    
    def __init__(self):
        self.dtype = numpy.complex64  # : initial value: numpy.complex64
        self.debug = 0  #: initial value: 0
        self.Nd = ()  # : initial value: ()
        self.Kd = ()  # : initial value: ()
        self.Jd = ()  #: initial value: ()
        self.ndims = 0  # : initial value: 0
        self.ft_axes = ()  # : initial value: ()
        self.batch = None  # : initial value: None
        # self.processor='torch'
        self.tf = import_module('tensorflow')
        self.tf.executing_eagerly()
        
    def sparse_mx_to_tf_sparse_tensor(self, X):
        coo = X.tocoo()
        indices = numpy.mat([coo.row, coo.col]).transpose()
        return self.tf.SparseTensor(indices, coo.data.astype('complex64'), coo.shape)

    def plan(self, om, Nd, Kd, Jd):
        """
        Plan the NUFFT object with the geometry provided.
    
        :param om: The M off-grid locates in the frequency domain,
                    which is normalized between [-pi, pi]
        :param Nd: The matrix size of the equispaced image.
                   Example: Nd=(256,256) for a 2D image;
                             Nd = (128,128,128) for a 3D image
        :param Kd: The matrix size of the oversampled frequency grid.
                   Example: Kd=(512,512) for 2D image;
                            Kd = (256,256,256) for a 3D image
        :param Jd: The interpolator size.
                   Example: Jd=(6,6) for 2D image;
                            Jd = (6,6,6) for a 3D image
        :param ft_axes: (Optional) The axes for Fourier transform.
                        The default is all axes if 'None' is given.
        :param batch: (Optional) Batch mode.
                     If the batch is provided, the last appended axis is the number
                     of identical NUFFT to be transformed.
                     The default is 'None'.
        :type om: numpy.float array, matrix size = M * ndims
        :type Nd: tuple, ndims integer elements.
        :type Kd: tuple, ndims integer elements.
        :type Jd: tuple, ndims integer elements.
        :type ft_axes: None, or tuple with optional integer elements.
        :returns: 0
        :rtype: int, float
    
        :ivar Nd: initial value: Nd
        :ivar Kd: initial value: Kd
        :ivar Jd: initial value: Jd
        :ivar ft_axes: initial value: None
    
        :Example:
    
        >>> from pynufft import NUFFT
        >>> NufftObj = NUFFT()
        >>> NufftObj.plan(om, Nd, Kd, Jd)
    
        or
    
        >>> NufftObj.plan(om, Nd, Kd, Jd, ft_axes)
    
        """
        from ..src._helper import helper#, helper1
        self.ndims = len(Nd)  # : initial value: len(Nd)
        ft_axes = tuple(jj for jj in range(0, self.ndims))
        self.st = helper.plan(om, Nd, Kd, Jd, ft_axes=ft_axes,
                              format='CSR')
    
        self.Nd = self.st['Nd']  # backup
        self.Kd = self.st['Kd']
        # backup
        # self.sn = numpy.asarray(self.st['sn'].astype(self.dtype), order='C')
    
    
        # self.sn = self.torch.from_numpy(numpy.asarray(self.st['sn'].astype(self.dtype), order='C'))
        self.sn = self.tf.convert_to_tensor(self.st['sn'], dtype=self.tf.complex64)
        
        self.tf_sp = self.sparse_mx_to_tf_sparse_tensor(self.st['p'])
        # torch.sparse.FloatTensor(i, v, torch.Size(shape))#.to_dense()
        
        # i2 = torch.LongTensor(numpy.vstack((coo.col, coo.row)))
        self.tf_spH = self.sparse_mx_to_tf_sparse_tensor(self.st['p'].getH().copy())
        # self.spH = torch.sparse.FloatTensor(i2, v, torch.Size((shape[1], shape[0])))
        
        
        # self.spH = (self.st['p'].getH().copy()).tocsr()
        
        # self.Kdprod = numpy.int32(numpy.prod(self.st['Kd']))
        # self.Jdprod = numpy.int32(numpy.prod(self.st['Jd']))
        # del self.st['p'], self.st['sn']
        #
        # self.NdCPUorder, self.KdCPUorder, self.nelem = helper.preindex_copy(
        #     self.st['Nd'],
        #     self.st['Kd'])
    #     self.volume = {}
    #     self.volume['cpu_coil_profile'] = numpy.ones(self.multi_Nd)
    
        return 0
    def forward(self, x):
        xx = self.x2xx(x)
        k = self.xx2k(xx)
        y = self.k2y(k)
        # y = self.k2y(self.xx2k(self.x2xx))
        return y
    def adjoint(self, y):
        k = self.y2k(y)
        xx = self.k2xx(k)
        x = self.xx2x(xx)
        # x = self.xx2x(self.k2xx(self.y2k(y)))
        return x
    def x2xx(self, x):
        xx = self.sn*self.tf.convert_to_tensor(x, dtype=self.tf.complex64)
        # xx = torch.mul(x, self.sn)
        return xx
    
    def xx2k(self,xx):
        x_tmp = numpy.zeros(self.Kd, dtype=numpy.complex64)
        x_tmp[tuple(slice(self.Nd[jj]) for jj in range(0, self.ndims))] = xx
        k = self.tf.convert_to_tensor(x_tmp, dtype=self.tf.complex64)
        if self.ndims == 1:
            k = self.tf.signal.fft(k)
        if self.ndims == 2:
            k = self.tf.signal.fft2d(k)
        elif self.ndims == 3:
            k = self.tf.signal.fft3d(k)
        return k
    
    def k2y(self, k):
        k = self.tf.reshape(k, (numpy.prod(self.Kd), 1))
        # torch_y = self.torch_sp.mv(self.torch.flatten(k))
        tf_y = self.tf.sparse.sparse_dense_matmul(self.tf_sp, k)
        return tf_y[:,0]
    
    def y2k(self, tf_y):
        tf_y = self.tf.reshape(tf_y, tf_y.shape + (1,))
        k2 = self.tf.reshape(self.tf.sparse.sparse_dense_matmul(self.tf_spH, tf_y), self.Kd)
        # k = self.torch.reshape(self.torch_spH.mv(torch_y), self.Kd)
        return k2
    
    def k2xx(self, k):
        if self.ndims == 1:
            k = self.tf.signal.ifft(k)
        if self.ndims == 2:
            k = self.tf.signal.ifft2d(k)
        elif self.ndims == 3:
            k = self.tf.signal.ifft3d(k)
        xx = k[list(slice(self.Nd[jj]) for jj in range(0, self.ndims))]
        # xx = self.torch.fft.ifftn(k)[list(slice(self.Nd[jj]) for jj in range(0, self.ndims))] 
        return xx
    
    def xx2x(self,xx):
        return self.x2xx(xx)

class NUFFT:
    """
    NUFFT class
    =======================================
    A super class of cpu and gpu NUFFT functions. 
    
    Note: NUFFT does not inherit NUFFT_cpu (deprecated) and NUFFT_hsa (deprecated).
    """
    #import cpu codes
    from ._nufft_class_methods_cpu import _init__cpu, _plan_cpu, _precompute_sp_cpu, _solve_cpu, _forward_cpu, _adjoint_cpu, _selfadjoint_cpu, _selfadjoint2_cpu, _x2xx_cpu, _xx2k_cpu, _xx2k_one2one_cpu, _k2vec_cpu, _vec2y_cpu, _k2y_cpu, _y2vec_cpu, _vec2k_cpu, _y2k_cpu, _k2xx_cpu, _k2xx_one2one_cpu, _xx2x_cpu, _k2y2k_cpu
    # import host codes
    from ._nufft_class_methods_cpu import  _forward_host,  _adjoint_host, _selfadjoint_host,  _solve_host, _xx2k_host, _k2xx_host, _x2xx_host, _xx2x_host, _k2y_host,  _y2k_host
    # import device codes
    from ._nufft_class_methods_device import _init__device, _plan_device,  _set_wavefront_device, _offload_device, to_device, to_host, _x2xx_device, _xx2k_device, _k2y_device, _y2k_device, _k2xx_device, _xx2x_device,  _selfadjoint_device, _forward_device,  _adjoint_device, release, _solve_device, release
    
    # legacy codes (csr format for device)
    from ._nufft_class_methods_device import _y2k_legacy, _k2y_legacy, _forward_legacy, _adjoint_legacy, _selfadjoint_legacy, _plan_legacy, _offload_legacy, _solve_legacy
    from ._nufft_class_methods_cpu import _k2y_legacy_host,  _y2k_legacy_host, _selfadjoint_legacy_host, _forward_legacy_host, _adjoint_legacy_host,  _solve_legacy_host
    
    def __init__(self, device_indx=None, legacy=None):
        """
        Constructor.

        :param None:
        :type None: Python NoneType
        :return: NUFFT: the pynufft.NUFFT instance
        :rtype: NUFFT: the pynufft.NUFFT class
        :Example:

        >>> from pynufft import NUFFT
        >>> NufftObj = NUFFT()
        
        or 
        
        >>> from pynufft import NUFFT, helper
        >>> device = helper.device_list()[0]
        >>> NufftObj = NUFFT(device) # for first acceleration device in the system
        
        """
        if device_indx is None:
            self._init__cpu()
            self.processor = 'cpu'
        else:
            if legacy is True:
                self._init__device(device_indx)
                self.processor = 'hsa_legacy'
            else:
                self._init__device(device_indx)
                self.processor = 'hsa'
            
    def __del__(self):
        if self.processor is 'hsa' or 'hsa_legacy':
            self.release()
        else:
            pass
                
    def plan(self,  *args, **kwargs):
        """
        Plan the NUFFT object with the geometry provided.

        :param om: The M off-grid locates in the frequency domain,
                    which is normalized between [-pi, pi]
        :param Nd: The matrix size of the equispaced image.
                   Example: Nd=(256,256) for a 2D image;
                             Nd = (128,128,128) for a 3D image
        :param Kd: The matrix size of the oversampled frequency grid.
                   Example: Kd=(512,512) for 2D image;
                            Kd = (256,256,256) for a 3D image
        :param Jd: The interpolator size.
                   Example: Jd=(6,6) for 2D image;
                            Jd = (6,6,6) for a 3D image
        :param ft_axes: (Optional) The axes for Fourier transform.
                        The default is all axes if 'None' is given.
        :type om: numpy.float array, matrix size = M * ndims
        :type Nd: tuple, ndims integer elements.
        :type Kd: tuple, ndims integer elements.
        :type Jd: tuple, ndims integer elements.
        :type ft_axes: None, or tuple with optional integer elements.
        :returns: 0
        :rtype: int, float

        :ivar Nd: initial value: Nd
        :ivar Kd: initial value: Kd
        :ivar Jd: initial value: Jd
        :ivar ft_axes: initial value: None

        :Example:

        >>> from pynufft import NUFFT
        >>> NufftObj = NUFFT()
        >>> NufftObj.plan(om, Nd, Kd, Jd)

        or

        >>> NufftObj.plan(om, Nd, Kd, Jd, ft_axes)

        """        
        func = {'cpu': self._plan_cpu,
                    'hsa': self._plan_device,
                    'hsa_legacy': self._plan_legacy}
        return func.get(self.processor)(*args, **kwargs)
    
    def forward(self, *args, **kwargs):
        """
        Forward NUFFT (host code)

        :param x: The input numpy array, with the size of Nd 
        :type: numpy array with the dtype of numpy.complex64
        :return: y: The output numpy array, with the size of (M,) 
        :rtype: numpy array with the dtype of numpy.complex64
        """        
        func = {'cpu': self._forward_cpu, 
                    'hsa': self._forward_host,
                    'hsa_legacy': self._forward_legacy_host}
        return func.get(self.processor)(*args, **kwargs)
    
    def adjoint(self, *args, **kwargs):
        """
        Adjoint NUFFT (host code)

        :param y: The input numpy array, with the size of (M,) 
        :type: numpy array with the dtype of numpy.complex64
        :return: x: The output numpy array,
                    with the size of Nd or Nd 
        :rtype: numpy array with the dtype of numpy.complex64
        """        
        func = {'cpu': self._adjoint_cpu,
                'hsa': self._adjoint_host,
                'hsa_legacy': self._adjoint_legacy_host}
        return func.get(self.processor)(*args, **kwargs)
    
    def selfadjoint(self, *args, **kwargs):
        """
        selfadjoint NUFFT (host code)

        :param x: The input numpy array, with size=Nd
        :type: numpy array with dtype =numpy.complex64
        :return: x: The output numpy array, with size=Nd
        :rtype: numpy array with dtype =numpy.complex64
        """
        func = {'cpu': self._selfadjoint_cpu,
                'hsa': self._selfadjoint_host,
                'hsa_legacy': self._selfadjoint_legacy_host}
        return func.get(self.processor)(*args, **kwargs)
    
    def solve(self, *args, **kwargs):
        """
        Solve NUFFT (host code)
        :param y: data, numpy.complex64. The shape = (M,) 
        :param solver: 'cg', 'L1TVOLS', 'lsmr', 'lsqr', 'dc', 'bicg',
                       'bicgstab', 'cg', 'gmres','lgmres'
        :param maxiter: the number of iterations
        :type y: numpy array, dtype = numpy.complex64
        :type solver: string
        :type maxiter: int
        :return: numpy array with size Nd.
        """        
        func = {'cpu': self._solve_cpu,
                'hsa': self._solve_host,
                'hsa_legacy': self._solve_legacy_host}
        return func.get(self.processor)(*args, **kwargs)
    
    def xx2k(self, *args, **kwargs):
        func = {'cpu': self._xx2k_cpu,
                'hsa': self._xx2k_host,
                'hsa_legacy': self._xx2k_host}
        return func.get(self.processor)(*args, **kwargs)
    
    def k2xx(self, *args, **kwargs):
        func = {'cpu': self._k2xx_cpu,
                'hsa': self._k2xx_host,
                'hsa_legacy': self._k2xx_host}
        return func.get(self.processor)(*args, **kwargs)
    
    def x2xx(self, *args, **kwargs):
        func = {'cpu': self._x2xx_cpu,
                'hsa': self._x2xx_host,
                'hsa_legacy': self._x2xx_host}
        return func.get(self.processor)(*args, **kwargs)
    
    def xx2x(self, *args, **kwargs):
        func = {'cpu': self._xx2x_cpu,
                'hsa': self._xx2x_host,
                'hsa_legacy': self._xx2x_host}
        return func.get(self.processor)(*args, **kwargs)
    
    def k2y(self, *args, **kwargs):
        func = {'cpu': self._k2y_cpu,
                'hsa': self._k2y_host,
                'hsa_legacy': self._k2y_legacy_host}
        return func.get(self.processor)(*args, **kwargs)
    
    def y2k(self, *args, **kwargs):
        func = {'cpu': self._y2k_cpu,
                'hsa': self._y2k_host,
                'hsa_legacy': self._y2k_legacy_host}
        return func.get(self.processor)(*args, **kwargs)
    
    def k2yk2(self, *args, **kwargs):
        func = {'cpu': self._k2yk2_cpu,
                'hsa': self._k2yk2_host,
                'hsa_legacy': self._k2yk2_host}
        return func.get(self.processor)(*args, **kwargs)
    
#     def adjoint_many2one(self, *args, **kwargs):
#         func = {'cpu': self._adjoint_many2one_cpu,
#                 'hsa': self._adjoint_many2one_host,
#                 'hsa_legacy': self._adjoint_many2one_legacy_host}
#         return func.get(self.processor)(*args, **kwargs)
#     
#     def forward_one2many(self, *args, **kwargs):
#         func = {'cpu': self._forward_one2many_cpu,
#                 'hsa': self._forward_one2many_host,
#                 'hsa_legacy': self._forward_one2many_legacy_host}
#         return func.get(self.processor)(*args, **kwargs)
    
#     def selfadjoint_one2many2one(self, *args, **kwargs):
#         func = {'cpu': self._selfadjoint_one2many2one_cpu,
#                 'hsa': self._selfadjoint_one2many2one_host,
#                 'hsa_legacy': self._selfadjoint_one2many2one_legacy_host}
#         return func.get(self.processor)(*args, **kwargs)   
    
    def k2xx_one2one(self, *args, **kwargs):
        func = {'cpu':self._k2xx_one2one_cpu}
        return func.get(self.processor)(*args, **kwargs)
    
    def xx2k_one2one(self, *args, **kwargs):
        func = {'cpu':self._xx2k_one2one_cpu}
        return func.get(self.processor)(*args, **kwargs) 
    
    def k2y2k(self, *args, **kwargs):
        func = {'cpu': self._k2y2k_cpu}
        return func.get(self.processor)(*args, **kwargs)
#     def set_sense(self, *args, **kwargs):
#         func = {'cpu': self._set_sense_cpu,
#                 'hsa': self._set_sense_host,
#                 'hsa_legacy': self._set_sense_host}
#         return func.get(self.processor)(*args, **kwargs)
#     def reset_sense(self, *args, **kwargs):
#         func = {'cpu': self._reset_sense_cpu,
#                 'hsa': self._reset_sense_host,
#                 'hsa_legacy': self._reset_sense_host}
#         return func.get(self.processor)(*args, **kwargs)
    

back to top

Software Heritage — Copyright (C) 2015–2025, The Software Heritage developers. License: GNU AGPLv3+.
The source code of Software Heritage itself is available on our development forge.
The source code files archived by Software Heritage are available under their own copyright and licenses.
Terms of use: Archive access, API— Content policy— Contact— JavaScript license information— Web API