Skip to main content
  • Home
  • Development
  • Documentation
  • Donate
  • Operational login
  • Browse the archive

swh logo
SoftwareHeritage
Software
Heritage
Archive
Features
  • Search

  • Downloads

  • Save code now

  • Add forge now

  • Help

  • b7953a0
  • /
  • dea.jl
Raw File Download
Permalinks

To reference or cite the objects present in the Software Heritage archive, permalinks based on SoftWare Hash IDentifiers (SWHIDs) must be used.
Select below a type of object currently browsed in order to display its associated SWHID and permalink.

  • content
  • directory
content badge Iframe embedding
swh:1:cnt:a87d4581b7ac07e9b4d19a930634abccfa04defb
directory badge Iframe embedding
swh:1:dir:b7953a0181984616831ccdfbbba622e10eb82cca
Citations

This interface enables to generate software citations, provided that the root directory of browsed objects contains a citation.cff or codemeta.json file.
Select below a type of object currently browsed in order to generate citations for them.

  • content
  • directory
Generate software citation in BibTex format (requires biblatex-software package)
Generating citation ...
Generate software citation in BibTex format (requires biblatex-software package)
Generating citation ...
dea.jl
# This file contains functions for the Radial DEA model
"""
    AbstractRadialDEAModel
An abstract type representing a radial DEA model.
"""
abstract type AbstractRadialDEAModel <: AbstractTechnicalDEAModel end

"""
    RadialDEAModel
An data structure representing a radial DEA model.
"""
struct RadialDEAModel <: AbstractRadialDEAModel
    n::Int64
    m::Int64
    s::Int64
    orient::Symbol
    rts::Symbol
    disposX::Symbol
    disposY::Symbol
    dmunames::Union{Vector{AbstractString},Nothing}
    eff::Vector
    slackX::Matrix
    slackY::Matrix
    lambda::SparseMatrixCSC{Float64, Int64}
    Xtarget::Matrix
    Ytarget::Matrix
end

"""
    dea(X, Y)
Compute the radial model using data envelopment analysis for inputs X and outputs Y.

# Optional Arguments
- `orient=:Input`: chooses the radially oriented input mode. For the radially oriented output model choose `:Output`.
- `rts=:CRS`: chooses constant returns to scale. For variable returns to scale choose `:VRS`.
- `slack=true`: computes input and output slacks.
- `Xref=X`: Identifies the reference set of inputs against which the units are evaluated.
- `Yref=Y`: Identifies the reference set of outputs against which the units are evaluated.
- `disposX=:Strong`: chooses strong disposability of inputs. For weak disposability choose `:Weak`.
- `disposY=:Strong`: chooses strong disposability of outputs. For weak disposability choose `:Weak`.
- `names`: a vector of strings with the names of the decision making units.
"""
function dea(X::Union{Matrix,Vector}, Y::Union{Matrix,Vector};
    orient::Symbol = :Input, rts::Symbol = :CRS, slack::Bool = true,
    Xref::Union{Matrix,Vector,Nothing} = nothing, Yref::Union{Matrix, Vector,Nothing} = nothing,
    disposX::Symbol = :Strong, disposY::Symbol = :Strong,
    names::Union{Vector{<: AbstractString},Nothing} = nothing,
    optimizer::Union{DEAOptimizer,Nothing} = nothing, progress::Bool = false)::RadialDEAModel

    # Check parameters
    nx, m = size(X, 1), size(X, 2)
    ny, s = size(Y, 1), size(Y, 2)

    if Xref === nothing Xref = X end
    if Yref === nothing Yref = Y end

    nrefx, mref = size(Xref, 1), size(Xref, 2)
    nrefy, sref = size(Yref, 1), size(Yref, 2)

    if nx != ny
        throw(DimensionMismatch("number of rows in X and Y ($nx, $ny) are not equal"));
    end
    if nrefx != nrefy
        throw(DimensionMismatch("number of rows in Xref and Yref ($nrefx, $nrefy) are not equal"));
    end
    if m != mref
        throw(DimensionMismatch("number of columns in X and Xref ($m, $mref) are not equal"));
    end
    if s != sref
        throw(DimensionMismatch("number of columns in Y and Yref ($s, $sref) are not equal"));
    end

    if disposX != :Strong && disposX != :Weak
        throw(ArgumentError("`disposX` must be :Strong or :Weak"));
    end

    if disposY != :Strong && disposY != :Weak
        throw(ArgumentError("`disposY` must be :Strong or :Weak"));
    end

    # Default optimizer
    if optimizer === nothing 
        optimizer = DEAOptimizer(:LP)
    end

    # Compute efficiency for each DMU
    n = nx
    nref = nrefx

    effi = zeros(n)
    lambdaeff = spzeros(n, nref)

    p = progressbarmeter(n, desc = "Computing Radial DEA Model...", progress = progress)

    for i=1:n
        # Value of inputs and outputs to evaluate
        x0 = X[i,:]
        y0 = Y[i,:]

        # Create the optimization model
        deamodel = newdeamodel(optimizer)

        @variable(deamodel, eff)
        @variable(deamodel, lambda[1:nref] >= 0)

        if orient == :Input
            # Input orientation
            @objective(deamodel, Min, eff)

            # Inequality or equality restrictions based on disposability
            if disposX == :Strong
                @constraint(deamodel, [j in 1:m], sum(Xref[t,j] * lambda[t] for t in 1:nref) <= eff * x0[j])
            elseif disposX == :Weak
                @constraint(deamodel, [j in 1:m], sum(Xref[t,j] * lambda[t] for t in 1:nref) == eff * x0[j])
            end

            if disposY == :Strong
                @constraint(deamodel, [j in 1:s], sum(Yref[t,j] * lambda[t] for t in 1:nref) >= y0[j])
            elseif disposY == :Weak
                @constraint(deamodel, [j in 1:s], sum(Yref[t,j] * lambda[t] for t in 1:nref) == y0[j])
            end

        elseif orient == :Output
            # Output orientation
            @objective(deamodel, Max, eff)

            # Inequality or equality restrictions based on disposability
            if disposX == :Strong
                @constraint(deamodel, [j in 1:m], sum(Xref[t,j] * lambda[t] for t in 1:nref) <= x0[j])
            elseif disposX == :Weak
                @constraint(deamodel, [j in 1:m], sum(Xref[t,j] * lambda[t] for t in 1:nref) == x0[j])
            end

            if disposY == :Strong
                @constraint(deamodel, [j in 1:s], sum(Yref[t,j] * lambda[t] for t in 1:nref) >= eff * y0[j])
            elseif disposY == :Weak
                @constraint(deamodel, [j in 1:s], sum(Yref[t,j] * lambda[t] for t in 1:nref) == eff * y0[j])
            end

        else
            throw(ArgumentError("`orient` must be :Input or :Output"));
        end

        # Add return to scale constraints
        if rts == :CRS
            # No contraint to add for constant returns to scale
        elseif rts == :VRS
            @constraint(deamodel, sum(lambda) == 1)
        else
            throw(ArgumentError("`rts` must be :CRS or :VRS"));
        end

        # Optimize and return results
        JuMP.optimize!(deamodel)

        effi[i]  = JuMP.objective_value(deamodel)
        lambdaeff[i,:] = JuMP.value.(lambda)

        # Check termination status
        if (termination_status(deamodel) != MOI.OPTIMAL) && (termination_status(deamodel) != MOI.LOCALLY_SOLVED)
            @warn ("DMU $i termination status: $(termination_status(deamodel)). Primal status: $(primal_status(deamodel)). Dual status: $(dual_status(deamodel))")
        end

        next!(p)
    end

    # Get first-stage X and Y targets
    if orient == :Input
        Xtarget = X .* effi
        Ytarget = Y
    elseif orient == :Output
        Xtarget = X
        Ytarget = Y .* effi
    end

    # Compute slacks
    if slack == true

        # Use additive model with radial efficient X and Y to get slacks
        if disposX == :Strong
            rhoX = ones(size(X))
        elseif disposX == :Weak
            rhoX = zeros(size(X))
        end

        if disposY == :Strong
            rhoY = ones(size(Y))
        elseif disposY == :Weak
            rhoY = zeros(size(Y))
        end

        slacksmodel = deaadd(Xtarget, Ytarget, rhoX = rhoX, rhoY = rhoY, rts = rts, Xref = Xref, Yref = Yref, optimizer = optimizer)
        slackX = slacks(slacksmodel, :X)
        slackY = slacks(slacksmodel, :Y)

        # Get second-stage X and Y targets
        Xtarget = Xtarget - slackX
        Ytarget = Ytarget + slackY
    else
        if typeof(Xtarget) <: AbstractVector    Xtarget = Xtarget[:,:]  end
        if typeof(Ytarget) <: AbstractVector    Ytarget = Ytarget[:,:]  end

        slackX = Array{Float64}(undef, 0, 0)
        slackY = Array{Float64}(undef, 0, 0)
    end

    return RadialDEAModel(n, m, s, orient, rts, disposX, disposY, names, effi, slackX, slackY, lambdaeff, Xtarget, Ytarget)

end

function Base.show(io::IO, x::RadialDEAModel)
    compact = get(io, :compact, false)

    n = nobs(x)
    m = ninputs(x)
    s = noutputs(x)
    disposX = x.disposX
    disposY = x.disposY
    dmunames = names(x)

    eff = efficiency(x)
    slackX = slacks(x, :X)
    slackY = slacks(x, :Y)
    hasslacks = ! isempty(slackX)

    if !compact
        print(io, "Radial DEA Model \n")
        print(io, "DMUs = ", n)
        print(io, "; Inputs = ", m)
        print(io, "; Outputs = ", s)
        print(io, "\n")
        print(io, "Orientation = ", string(x.orient))
        print(io, "; Returns to Scale = ", string(x.rts))
        print(io, "\n")
        if disposX == :Weak print(io, "Weak disposability of inputs \n") end
        if disposY == :Weak print(io, "Weak disposability of outputs \n") end

        if hasslacks == true
            show(io, CoefTable(hcat(eff, slackX, slackY), ["efficiency"; ["slackX$i" for i in 1:m ]; ["slackY$i" for i in 1:s ]], dmunames))
        else
            show(io, CoefTable(hcat(eff), ["efficiency"], dmunames))
        end
    end

end

back to top

Software Heritage — Copyright (C) 2015–2025, The Software Heritage developers. License: GNU AGPLv3+.
The source code of Software Heritage itself is available on our development forge.
The source code files archived by Software Heritage are available under their own copyright and licenses.
Terms of use: Archive access, API— Contact— JavaScript license information— Web API