Skip to main content
  • Home
  • Development
  • Documentation
  • Donate
  • Operational login
  • Browse the archive

swh logo
SoftwareHeritage
Software
Heritage
Archive
Features
  • Search

  • Downloads

  • Save code now

  • Add forge now

  • Help

https://github.com/bartvbl/Quick-Intersection-Count-Change-Image-Reproduction
02 November 2025, 15:43:18 UTC
  • Code
  • Branches (1)
  • Releases (0)
  • Visits
    • Branches
    • Releases
    • HEAD
    • refs/heads/master
    No releases to show
  • d272118
  • /
  • scripts
  • /
  • buildDistanceFunctionsSpreadsheet.py
Raw File Download
Take a new snapshot of a software origin

If the archived software origin currently browsed is not synchronized with its upstream version (for instance when new commits have been issued), you can explicitly request Software Heritage to take a new snapshot of it.

Use the form below to proceed. Once a request has been submitted and accepted, it will be processed as soon as possible. You can then check its processing state by visiting this dedicated page.
swh spinner

Processing "take a new snapshot" request ...

To reference or cite the objects present in the Software Heritage archive, permalinks based on SoftWare Hash IDentifiers (SWHIDs) must be used.
Select below a type of object currently browsed in order to display its associated SWHID and permalink.

  • content
  • directory
  • revision
  • snapshot
origin badgecontent badge Iframe embedding
swh:1:cnt:a91ee38af7cc2746ed3ac01daa390a6517a281b2
origin badgedirectory badge Iframe embedding
swh:1:dir:e6c9e61944818b7d08c0fabf236343e9775c5126
origin badgerevision badge
swh:1:rev:ab7816a53dfc5d650f47a973bebdea440b254151
origin badgesnapshot badge
swh:1:snp:3412a66e65bea20b7e168a888d9d72c2f394bcad

This interface enables to generate software citations, provided that the root directory of browsed objects contains a citation.cff or codemeta.json file.
Select below a type of object currently browsed in order to generate citations for them.

  • content
  • directory
  • revision
  • snapshot
Generate software citation in BibTex format (requires biblatex-software package)
Generating citation ...
Generate software citation in BibTex format (requires biblatex-software package)
Generating citation ...
Generate software citation in BibTex format (requires biblatex-software package)
Generating citation ...
Generate software citation in BibTex format (requires biblatex-software package)
Generating citation ...
Tip revision: ab7816a53dfc5d650f47a973bebdea440b254151 authored by bartvbl on 25 October 2020, 14:50:57 UTC
Updated publishing information
Tip revision: ab7816a
buildDistanceFunctionsSpreadsheet.py
import json
import math
import os
import os.path
import datetime
from multiprocessing import Pool, cpu_count

import xlwt
import pprint
import statistics

import numpy as np
import matplotlib
import matplotlib.pyplot as plt
import matplotlib.colors as colors
from PIL import Image

inputDirectory = '../input/distances_computed_by_authors/run12_quicci_distance_functions_rerun/output/'
baselineDirectory = '../input/distances_computed_by_authors/run14_quicci_distance_functions_baseline/'

outfile = '../output/distance_function_evaluation/nominal_distance_function_result_histograms.xls'
baselineWeightedHammingDumpFile = '../output/distance_function_evaluation/weighted_hamming_distance_function_baseline.txt'
baselineHammingDumpFile = '../output/distance_function_evaluation/hamming_distance_function_baseline.txt'
baselineClutterResistantDumpFile = '../output/distance_function_evaluation/clutter_resistant_distance_function_baseline.txt'

os.makedirs('../output/distance_function_evaluation', exist_ok=True)

resultMap = {}

sphereCounts = range(0, 510, 10)

seedList = []
imageCountList = []

imageSize = 4096

numSphereClutterLevels = 50 + 1
maxDistance = 4096

similarSurfaceClutterResistantHistogram = np.zeros(shape=(maxDistance, numSphereClutterLevels), dtype=np.int64)
similarSurfaceWeightedHammingHistogram = np.zeros(shape=(maxDistance, numSphereClutterLevels), dtype=np.int64)
similarSurfaceHammingHistogram = np.zeros(shape=(maxDistance, numSphereClutterLevels), dtype=np.int64)

baselineClutterResistantHistogram = np.zeros(shape=(maxDistance), dtype=np.int64)
baselineWeightedHammingHistogram = np.zeros(shape=(2 * maxDistance), dtype=np.int64)
baselineHammingHistogram = np.zeros(shape=(maxDistance), dtype=np.int64)

baselineTotalImageCount = 0

print('Processing results from baseline distances..')
baselineFileToRead = os.listdir(baselineDirectory)
for fileindex, file in enumerate(baselineFileToRead):
    print(str(fileindex + 1) + '/' + str(len(baselineFileToRead)), file + '        ', end='\r', flush=True)
    with open(os.path.join(baselineDirectory, file), 'r') as openFile:
        # Read JSON file
        try:
            fileContents = json.loads(openFile.read())
        except Exception as e:
            print('FAILED TO READ FILE: ' + str(file))
            print(e)
            continue

    baselineTotalImageCount += fileContents['imageCount']
    for imageIndex, imageBitCount in enumerate(fileContents['imageBitCounts']):
        baselineClutterResistantHistogram[
            fileContents['measuredDistances']['clutterResistant']['0 spheres'][imageIndex]] += 1

        baselineWeightedHammingHistogram[
            int(fileContents['measuredDistances']['weightedHamming']['0 spheres'][imageIndex])] += 1

        baselineHammingHistogram[
            fileContents['measuredDistances']['hamming']['0 spheres'][imageIndex]] += 1

print()
print('Total number of baseline images:', baselineTotalImageCount)
# 176,225,136

print()
print('Writing spreadsheet..')

book = xlwt.Workbook(encoding="utf-8")

resultsSheet = book.add_sheet('nominal_charts')

# Write headers
resultsSheet.write(0, 0, 'Clutter Resistant')
resultsSheet.write(1, 0, 'Distance Value')
resultsSheet.write(1, 1, 'Occurrence Count')

resultsSheet.write(0, 3, 'Weighted Hamming')
resultsSheet.write(1, 3, 'Distance Value')
resultsSheet.write(1, 4, 'Occurrence Count')

resultsSheet.write(0, 6, 'Hamming')
resultsSheet.write(1, 6, 'Distance Value')
resultsSheet.write(1, 7, 'Occurrence Count')

# Write distance function distances
for row in range(0, maxDistance):
    resultsSheet.write(row + 2, 0, row)
    resultsSheet.write(row + 2, 1, baselineClutterResistantHistogram[row].item())

    resultsSheet.write(2 * row + 0 + 2, 3, 2 * row + 0)
    resultsSheet.write(2 * row + 0 + 2, 4, baselineWeightedHammingHistogram[2 * row + 0].item())
    resultsSheet.write(2 * row + 1 + 2, 3, 2 * row + 1)
    resultsSheet.write(2 * row + 1 + 2, 4, baselineWeightedHammingHistogram[2 * row + 1].item())

    resultsSheet.write(row + 2, 6, row)
    resultsSheet.write(row + 2, 7, baselineHammingHistogram[row].item())

book.save(outfile)


print('Spreadsheet with nominal histograms has been written to:', outfile[3:])
print()

sphereClutterTotalImageCount = 0

def chunkify(lst, n):
    for i in range(0, len(lst), n):
        yield lst[i:i + n]

filesToRead = os.listdir(inputDirectory)

def process(threadinput):
    threadMaxDistance, threadSphereCounts, threadInputDirectory, threadFilesToRead = threadinput
    threadTotalImageCount = 0
    threadClutterResistantHistogram = np.zeros(shape=(maxDistance, numSphereClutterLevels), dtype=np.int64)
    threadWeightedHammingHistogram = np.zeros(shape=(maxDistance, numSphereClutterLevels), dtype=np.int64)
    threadHammingHistogram = np.zeros(shape=(maxDistance, numSphereClutterLevels), dtype=np.int64)
    for fileindex, file in enumerate(threadFilesToRead):
        if fileindex == 5:
            #break
            pass
        print(str(fileindex + 1) + '/' + str(len(threadFilesToRead)), file + '        ', end='\r', flush=True)
        with open(os.path.join(threadInputDirectory, file), 'r') as openFile:
            # Read JSON file
            try:
                fileContents = json.loads(openFile.read())
            except Exception as e:
                #print('FAILED TO READ FILE: ' + str(file))
                #print(e)
                continue

        # Add contents of file to result set
        threadTotalImageCount += fileContents['imageCount']

        for sphereIndex, sphereCount in enumerate(threadSphereCounts):
            for imageIndex in range(0, fileContents['imageCount']):
                clutterResistantDistance = \
                    fileContents['measuredDistances']['clutterResistant'][str(sphereCount) + ' spheres'][imageIndex]
                weightedHammingDistance = \
                    int(fileContents['measuredDistances']['weightedHamming'][str(sphereCount) + ' spheres'][imageIndex])
                hammingDistance = \
                    fileContents['measuredDistances']['hamming'][str(sphereCount) + ' spheres'][imageIndex]

                if clutterResistantDistance < threadMaxDistance:
                    threadClutterResistantHistogram[
                        clutterResistantDistance,
                        sphereIndex] += 1
                if weightedHammingDistance < threadMaxDistance:
                    threadWeightedHammingHistogram[
                        weightedHammingDistance,
                        sphereIndex] += 1
                if hammingDistance < threadMaxDistance:
                    threadHammingHistogram[
                        hammingDistance,
                        sphereIndex] += 1

    return (threadTotalImageCount,
            threadClutterResistantHistogram,
            threadWeightedHammingHistogram,
            threadHammingHistogram)

cpuCount = cpu_count()
print('Processing results from similar distances using', cpuCount, 'threads..')
processPool = Pool(cpuCount)
sphereClutterOutput = processPool.map(process, [(maxDistance, sphereCounts, inputDirectory, x) for x in list(chunkify(filesToRead, int(len(filesToRead) / cpuCount) + 1))])
processPool.close()

for outputEntry in sphereClutterOutput:
    threadTotalImageCount, threadClutterResistantHistogram, threadWeightedHammingHistogram, threadHammingHistogram = outputEntry
    similarSurfaceWeightedHammingHistogram = np.add(similarSurfaceWeightedHammingHistogram,
                                                    threadWeightedHammingHistogram)
    similarSurfaceClutterResistantHistogram = np.add(similarSurfaceClutterResistantHistogram,
                                                    threadClutterResistantHistogram)
    similarSurfaceHammingHistogram = np.add(similarSurfaceHammingHistogram,
                                                    threadHammingHistogram)
    sphereClutterTotalImageCount += threadTotalImageCount

print()
# 26,791,988
print('Sphere clutter total image count:', sphereClutterTotalImageCount)

plt.clf()

SMALL_SIZE = 12
MEDIUM_SIZE = 15
BIGGER_SIZE = 18

plt.rc('font', size=SMALL_SIZE)          # controls default text sizes
plt.rc('axes', titlesize=SMALL_SIZE)     # fontsize of the axes title
plt.rc('axes', labelsize=SMALL_SIZE)    # fontsize of the x and y labels
plt.rc('xtick', labelsize=SMALL_SIZE)    # fontsize of the tick labels
plt.rc('ytick', labelsize=SMALL_SIZE)    # fontsize of the tick labels
plt.rc('legend', fontsize=SMALL_SIZE)    # legend fontsize
plt.rc('figure', titlesize=BIGGER_SIZE)  # fontsize of the figure title

similarSurfaceClutterResistantHistogram = np.log10(np.maximum(similarSurfaceClutterResistantHistogram, 0.1))
similarSurfaceWeightedHammingHistogram = np.log10(np.maximum(similarSurfaceWeightedHammingHistogram, 0.1))
similarSurfaceHammingHistogram = np.log10(np.maximum(similarSurfaceHammingHistogram, 0.1))

clutterSphereHistograms = [similarSurfaceHammingHistogram, similarSurfaceClutterResistantHistogram, similarSurfaceWeightedHammingHistogram]
total_minimum_value = min([np.amin(x) for x in clutterSphereHistograms])
total_maximum_value = max([np.amax(x) for x in clutterSphereHistograms])
normalisation = colors.Normalize(vmin=total_minimum_value,vmax=total_maximum_value)

extent = [0, numSphereClutterLevels, 0, maxDistance]

horizontal_ticks_real_coords = np.arange(0, 60, 10)
horizontal_ticks_labels = [("%i" % x) for x in np.arange(0,600,100)]

plot = plt.figure(1)
plt.title('Clutter Resistant')
plt.ylabel('Distance value')
plt.xlabel('Added sphere count')
image = plt.imshow(similarSurfaceClutterResistantHistogram, interpolation='nearest', extent=extent, cmap='hot', aspect='auto', origin='lower', norm=normalisation)
plt.xticks(horizontal_ticks_real_coords, horizontal_ticks_labels)
plot.show()

plot = plt.figure(2)
plt.title('Weighted Hamming')
plt.ylabel('Distance value')
plt.xlabel('Added sphere count')
image = plt.imshow(similarSurfaceWeightedHammingHistogram, interpolation='nearest', extent=extent, cmap='hot', aspect='auto', origin='lower', norm=normalisation)
plt.xticks(horizontal_ticks_real_coords, horizontal_ticks_labels)
plot.show()

plot = plt.figure(3)
plt.title('Hamming')
plt.ylabel('Distance value')
plt.xlabel('Added sphere count')
image = plt.imshow(similarSurfaceHammingHistogram, interpolation='nearest', extent=extent, cmap='hot', aspect='auto', origin='lower', norm=normalisation)

plt.xticks(horizontal_ticks_real_coords, horizontal_ticks_labels)

colorbar_ticks = [-1.0, 0, 1, 2, 3, 4, 5, 6, 7]
colorbar_ticks_strings = ['0', '1E+00', '1E+01', '1E+02', '1E+03', '1E+04', '1E+05', '1E+06', '1E+07']
cbar = plt.colorbar(image, ticks=colorbar_ticks)
cbar.ax.set_yticklabels(colorbar_ticks_strings)
cbar.set_label('Sample count', rotation=90)

plot.show()

print('Complete.')
print()
print('Press enter to continue.. (will close heatmap windows)')
print()

input()

back to top

Software Heritage — Copyright (C) 2015–2025, The Software Heritage developers. License: GNU AGPLv3+.
The source code of Software Heritage itself is available on our development forge.
The source code files archived by Software Heritage are available under their own copyright and licenses.
Terms of use: Archive access, API— Content policy— Contact— JavaScript license information— Web API