# Copyright 2018 the GPflow authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import numpy as np from numpy.random import randn import tensorflow as tf import pytest import gpflow from gpflow import logdensities, settings from gpflow.test_util import session_tf from scipy.stats import multivariate_normal as mvn from numpy.testing import assert_allclose rng = np.random.RandomState(1) @pytest.mark.parametrize("x", [randn(4,10), randn(4,1)]) @pytest.mark.parametrize("mu", [randn(4,10), randn(4,1)]) @pytest.mark.parametrize("cov_sqrt", [randn(4,4), np.eye(4)]) def test_multivariate_normal(session_tf, x, mu, cov_sqrt): cov = np.dot(cov_sqrt, cov_sqrt.T) L = np.linalg.cholesky(cov) x_tf = tf.placeholder(settings.float_type) mu_tf = tf.placeholder(settings.float_type) gp_result = logdensities.multivariate_normal( x_tf, mu_tf, tf.convert_to_tensor(L)) gp_result = session_tf.run(gp_result, feed_dict={x_tf: x, mu_tf: mu}) if mu.shape[1] > 1: if x.shape[1] > 1: sp_result = [mvn.logpdf(x[:,i], mu[:,i], cov) for i in range(mu.shape[1])] else: sp_result = [mvn.logpdf(x.ravel(), mu[:, i], cov) for i in range(mu.shape[1])] else: sp_result = mvn.logpdf(x.T, mu.ravel(), cov) assert_allclose(gp_result, sp_result)