Skip to main content
  • Home
  • Development
  • Documentation
  • Donate
  • Operational login
  • Browse the archive

swh logo
SoftwareHeritage
Software
Heritage
Archive
Features
  • Search

  • Downloads

  • Save code now

  • Add forge now

  • Help

https://github.com/cran/bayestestR
04 June 2025, 07:26:28 UTC
  • Code
  • Branches (32)
  • Releases (0)
  • Visits
    • Branches
    • Releases
    • HEAD
    • refs/heads/master
    • refs/tags/0.1.0
    • refs/tags/0.10.0
    • refs/tags/0.10.5
    • refs/tags/0.11.0
    • refs/tags/0.11.5
    • refs/tags/0.12.1
    • refs/tags/0.13.0
    • refs/tags/0.13.1
    • refs/tags/0.13.2
    • refs/tags/0.14.0
    • refs/tags/0.15.0
    • refs/tags/0.15.1
    • refs/tags/0.15.2
    • refs/tags/0.15.3
    • refs/tags/0.16.0
    • refs/tags/0.2.0
    • refs/tags/0.2.2
    • refs/tags/0.2.5
    • refs/tags/0.3.0
    • refs/tags/0.4.0
    • refs/tags/0.5.0
    • refs/tags/0.5.1
    • refs/tags/0.5.2
    • refs/tags/0.5.3
    • refs/tags/0.6.0
    • refs/tags/0.7.0
    • refs/tags/0.7.2
    • refs/tags/0.7.5
    • refs/tags/0.8.0
    • refs/tags/0.8.2
    • refs/tags/0.9.0
    No releases to show
  • 6366c5f
  • /
  • man
  • /
  • distribution.Rd
Raw File Download
Take a new snapshot of a software origin

If the archived software origin currently browsed is not synchronized with its upstream version (for instance when new commits have been issued), you can explicitly request Software Heritage to take a new snapshot of it.

Use the form below to proceed. Once a request has been submitted and accepted, it will be processed as soon as possible. You can then check its processing state by visiting this dedicated page.
swh spinner

Processing "take a new snapshot" request ...

Permalinks

To reference or cite the objects present in the Software Heritage archive, permalinks based on SoftWare Hash IDentifiers (SWHIDs) must be used.
Select below a type of object currently browsed in order to display its associated SWHID and permalink.

  • content
  • directory
  • revision
  • snapshot
origin badgecontent badge Iframe embedding
swh:1:cnt:aaff52d82c513fa92eef170eaff08a4337b19c52
origin badgedirectory badge Iframe embedding
swh:1:dir:c6af825e5badebc12993a8ee9968fab1be48d8d0
origin badgerevision badge
swh:1:rev:40f7c88ddf855896018cf20ec8a7ac5fbd0ea2fb
origin badgesnapshot badge
swh:1:snp:5ae2939d3096a6dfbe0f03f295e3c5c9ab8f4cbc
Citations

This interface enables to generate software citations, provided that the root directory of browsed objects contains a citation.cff or codemeta.json file.
Select below a type of object currently browsed in order to generate citations for them.

  • content
  • directory
  • revision
  • snapshot
Generate software citation in BibTex format (requires biblatex-software package)
Generating citation ...
Generate software citation in BibTex format (requires biblatex-software package)
Generating citation ...
Generate software citation in BibTex format (requires biblatex-software package)
Generating citation ...
Generate software citation in BibTex format (requires biblatex-software package)
Generating citation ...
Tip revision: 40f7c88ddf855896018cf20ec8a7ac5fbd0ea2fb authored by Dominique Makowski on 27 January 2020, 05:30:28 UTC
version 0.5.1
Tip revision: 40f7c88
distribution.Rd
% Generated by roxygen2: do not edit by hand
% Please edit documentation in R/distribution.R
\name{distribution}
\alias{distribution}
\alias{distribution_normal}
\alias{distribution_binomial}
\alias{distribution_cauchy}
\alias{distribution_poisson}
\alias{distribution_student}
\alias{distribution_chisquared}
\alias{distribution_uniform}
\alias{distribution_beta}
\alias{distribution_tweedie}
\alias{distribution_gamma}
\alias{distribution_custom}
\alias{distribution_mixture_normal}
\alias{rnorm_perfect}
\title{Empirical Distributions}
\usage{
distribution(type = "normal", ...)

distribution_normal(n, mean = 0, sd = 1, random = FALSE, ...)

distribution_binomial(n, size = 1, prob = 0.5, random = FALSE, ...)

distribution_cauchy(n, location = 0, scale = 1, random = FALSE, ...)

distribution_poisson(n, lambda = 1, random = FALSE, ...)

distribution_student(n, df, ncp, random = FALSE, ...)

distribution_chisquared(n, df, ncp = 0, random = FALSE, ...)

distribution_uniform(n, min = 0, max = 1, random = FALSE, ...)

distribution_beta(n, shape1, shape2, ncp = 0, random = FALSE, ...)

distribution_tweedie(n, xi = NULL, mu, phi, power = NULL, random = FALSE, ...)

distribution_gamma(n, shape, scale = 1, random = FALSE, ...)

distribution_custom(n, type = "norm", ..., random = FALSE)

distribution_mixture_normal(n, mean = c(-3, 3), sd = 1, random = FALSE, ...)

rnorm_perfect(n, mean = 0, sd = 1)
}
\arguments{
\item{type}{Can be any of the names from base R's \link[stats]{Distributions}, like \code{"cauchy"}, \code{"pois"} or \code{"beta"}.}

\item{...}{Arguments passed to or from other methods.}

\item{n}{number of observations. If \code{length(n) > 1}, the length
    is taken to be the number required.}

\item{mean}{vector of means.}

\item{sd}{vector of standard deviations.}

\item{random}{Generate near-perfect or random (simple wrappers for the base R \code{r*} functions) distributions.}

\item{size}{number of trials (zero or more).}

\item{prob}{probability of success on each trial.}

\item{location}{location and scale parameters.}

\item{scale}{location and scale parameters.}

\item{lambda}{vector of (non-negative) means.}

\item{df}{degrees of freedom (\eqn{> 0}, maybe non-integer).  \code{df
      = Inf} is allowed.}

\item{ncp}{non-centrality parameter \eqn{\delta}{delta};
    currently except for \code{rt()}, only for \code{abs(ncp) <= 37.62}.
    If omitted, use the central t distribution.}

\item{min}{lower and upper limits of the distribution.  Must be finite.}

\item{max}{lower and upper limits of the distribution.  Must be finite.}

\item{shape1}{non-negative parameters of the Beta distribution.}

\item{shape2}{non-negative parameters of the Beta distribution.}

\item{xi}{the value of \eqn{\xi}{xi} such that the variance is 
	\eqn{\mbox{var}[Y]=\phi\mu^{\xi}}{var(Y) = phi * mu^xi}}

\item{mu}{the mean}

\item{phi}{the dispersion}

\item{power}{a synonym for \eqn{\xi}{xi}}

\item{shape}{shape and scale parameters.  Must be positive,
    \code{scale} strictly.}
}
\description{
Generate a sequence of n-quantiles, i.e., a sample of size \code{n} with a near-perfect distribution.
}
\examples{
library(bayestestR)
x <- distribution(n = 10)
plot(density(x))

x <- distribution(type = "gamma", n = 100, shape = 2)
plot(density(x))
}

back to top

Software Heritage — Copyright (C) 2015–2025, The Software Heritage developers. License: GNU AGPLv3+.
The source code of Software Heritage itself is available on our development forge.
The source code files archived by Software Heritage are available under their own copyright and licenses.
Terms of use: Archive access, API— Contact— JavaScript license information— Web API