\name{polylog} \alias{polylog} \title{Polylogarithm Li_s(z)} \description{ Compute the polylogarithm function \eqn{Li_s(z)}, initially defined as the power series, \deqn{\mathrm{Li}_s(z) = \sum_{k=1}^\infty {z^k \over k^s},}{% Li_s(z) = sum(k=1..Inf; z^k / k^s),} for \eqn{|z| < 1}, and then more generally (by analytic continuation) as \deqn{\mathrm{Li}_1(z) = -\log(1-z),}{Li_1(z) = -log(1-z),} and \deqn{\mathrm{Li}_{s+1}(z) = \int_0^z \frac{\mathrm{Li}_s(t)}{t}\,dt.}{% Li_{s+1}(z) = Int[0..z] (Li_s(t) / t) dt.} Currently only the case of negative integer \eqn{s} is well supported, as that is used for some of the Archimedean copula densities. } \usage{ polylog(z, s, method = c("sum", "negI-s-Stirling", "negI-s-Eulerian", "negI-s-asymp-w"), logarithm = FALSE, is.log.z = FALSE, is.logmlog = FALSE, asymp.w.order = 0, n.sum) } \arguments{ \item{z}{numeric or complex vector} \item{s}{complex number; current implementation is aimed at \eqn{s \in \{0,-1,\dots\}}{s in (0,-1,...)}} \item{method}{a string specifying the algorithm to be used.} \item{logarithm}{logical specified to return log(Li.(.)) instead of Li.(.)} \item{is.log.z}{logical; if TRUE, the specified \code{z} argument is really \eqn{w = \log(z)}{w = log(z)}; that is, we compute \eqn{Li_s(\exp(w))}{Li_s(exp(w))}, and we typically have \eqn{w < 0}, or equivalently, \eqn{z < 1}.} \item{is.logmlog}{logical; if TRUE, the specified argument \code{z} is \eqn{lw = \log(-w) = \log(-\log(z))}{lw = log(-w) = log(-log(z))} (where as above, \eqn{w = \log(z)}{w = log(z)}).} \item{asymp.w.order}{currently only default is implemented.} \item{n.sum}{for \code{method="sum"} only: the number of terms used.} } \details{ Almost entirely taken from \url{http://en.wikipedia.org/wiki/Polylogarithm}: For integer values of the polylogarithm order, the following explicit expressions are obtained by repeated application of \eqn{z \frac{\partial}{\partial z}}{z * d/dz} to \eqn{Li_1(z)}: %--- \deqn{ \mathrm{Li}_{1}(z) = -\log(1-z), \ \ \mathrm{Li}_{0}(z) = {z \over 1-z}, \ \ \mathrm{Li}_{-1}(z) = {z \over (1-z)^2}, \ \ \mathrm{Li}_{-2}(z) = {z \,(1+z) \over (1-z)^3}, }{% Li_1(z) = -log(1-z), Li_0(z) = z / (1-z), Li_{-1}(z) = z / (1-z)^2, Li_{-2}(z) = z (1+z) / (1-z)^3, } \eqn{\mathrm{Li}_{-3}(z) = {z \,(1+4z+z^2) \over (1-z)^4}}{% Li_{-3}(z) = z (1+4z+z^2) / (1-z)^4}, etc. Accordingly, the polylogarithm reduces to a ratio of polynomials in z, and is therefore a rational function of z, for all nonpositive integer orders. The general case may be expressed as a finite sum: %--- \deqn{\mathrm{Li}_{-n}(z) = \left(z \,{\partial \over \partial z} \right)^n \frac{z}{1-z} = = \sum_{k=0}^n k! \,S(n+1,k+1) \left({z \over {1-z}} \right)^{k+1} \ \ (n=0,1,2,\ldots),}{% Li_{-n}(z) = ( z d/dz )^n z/(1-z) = = sum(k=0..n ; k! S(n+1,k+1) (z /(1-z))^(k+1)), (n=0,1,2,...),} where \eqn{S(n,k)} are the Stirling numbers of the second kind. Equivalent formulae applicable to negative integer orders are (Wood 1992, ยง 6) ... \deqn{\mathrm{Li}_{-n}(z) = {1 \over (1-z)^{n+1}} \sum_{k=0}^{n-1} \left\langle {n \atop k} \right\rangle z^{n-k} = \frac{z \sum_{k=0}^{n-1} \left\langle {n \atop k} \right\rangle z^k}{(1-z)^{n+1}}, \qquad (n=1,2,3,\ldots) ~, }{% Li_{-n}(z) = 1/((1-z)^(n+1)) sum(k=0..(n-1); < n \ k > z^(n-k)) = = (z \sum_{k=0}^{n-1} < n \ k > z^k) / ((1-z)^(n+1)), (n=1,2,3,..),} where \eqn{\left\langle {n \atop k} \right\rangle}{< n \ k >} are the Eulerian numbers; see also \code{\link{Eulerian}}. % All roots of Li_{-n}(z) are distinct and real; they include z = 0. % Duplication formula: 2^{1-s} Li_s(z^2) = Li_s(z) + Li_s(-z). } \value{ numeric/complex vector as \code{z}. } \author{Martin Maechler} \references{ Wikipedia (2011) \emph{Polylogarithm}, \url{http://en.wikipedia.org/wiki/Polylogarithm}. Wood, D.C. (June 1992). The Computation of Polylogarithms. Technical Report 15-92. Canterbury, UK: University of Kent Computing Laboratory. \url{http://www.cs.kent.ac.uk/pubs/1992/110}.% Retrieved 2005-11-01. Apostol, T.M. (2010), \emph{"Polylogarithm"}, in the NIST Handbook of Mathematical Functions, \url{http://dlmf.nist.gov/25.12} Lewin, L. (1981). \emph{Polylogarithms and Associated Functions}. New York: North-Holland. ISBN 0-444-00550-1. } \seealso{ is used in MLE for some Archimedean copulas; see \code{\link{emle}}. } \examples{ polylog(z = 1, s = 2, n.sum = 1e5) ## in the limit, should be equal pi^2 / 6 z1 <- c(0.95, 0.99, 0.995, 0.999, 0.9999) L <- polylog( z1, s=-3,method="negI-s-Euler") # close to Inf LL <- polylog( log(z1), s=-3,method="negI-s-Euler",is.log.z=TRUE) LLL <- polylog(log(-log(z1)),s=-3,method="negI-s-Euler",is.logmlog=TRUE) all.equal(L, LL) all.equal(L, LLL) p.Li <- function(s.set, from = -2.6, to = 1/4, ylim = c(-1, 0.5), colors = c("orange","brown", palette()), n = 201, ...) { s.set <- sort(s.set, decreasing = TRUE) s <- s.set[1] # <_ for auto-ylab curve(polylog(x, s, method="negI-s-Stirling"), from, to, col=colors[1], ylim=ylim, n=n, ...) abline(h=0,v=0, col="gray") for(is in seq_along(s.set)[-1]) curve(polylog(x, s=s.set[is], method="negI-s-Stirling"), add=TRUE, col = colors[is], n=n) s <- rev(s.set) legend("bottomright",paste("s =",s), col=colors[2-s], lty=1, bty="n") } ## yellow is unbearable (on white): palette(local({p <- palette(); p[p=="yellow"] <- "goldenrod"; p})) ## Wikipedia page plot (+/-): p.Li(1:-3, ylim= c(-.8, 0.6), colors = c(2:4,6:7)) ## and a bit more: p.Li(1:-5) ## For the range we need it: ccol <- c(NA,NA, rep(palette(),10)) p.Li(-1:-20, from=0, to=.99, colors=ccol, ylim = c(0, 10)) ## log-y scale: p.Li(-1:-20, from=0, to=.99, colors=ccol, ylim = c(.01, 1e7), log = "y", yaxt = "n") if(require("sfsmisc")) eaxis(2) else axis(2) } \keyword{arithmetic}