https://github.com/bansallab/indoor_outdoor
Tip revision: 2a0e6c7e35bc07eb2fb901e202dca7e64fc9fe5c authored by Zachary Susswein on 02 April 2023, 16:11:23 UTC
Clean up paths and add required data
Clean up paths and add required data
Tip revision: 2a0e6c7
epi_geo_functions.py
#!/usr/bin/env python3
########################
# CODE FOR Running Community Structure Detection
#
# Code written by Shweta Bansal
# LAST UPDATED: Dec 22, 2022
########################
###########################################################
# IMPORT NECESSARY MODULES
import pandas as pd
import csv
import networkx as nx
import itertools
import numpy as np
import math
import operator
from collections import Counter
#import importlib
# import graphing tools
import matplotlib.pyplot as plt
import plotly.offline as plto
plto.init_notebook_mode(connected=True)
# import functions for mapping
import plotly.express as px
from urllib.request import urlopen
import json
import kaleido # to save map files
# import stats/machine learning tools
import scipy as sy
from sklearn.metrics.cluster import normalized_mutual_info_score
# import community # this is the networkx implementation of the Louvain algorithm
# from https://github.com/taynaud/python-louvain
import community
# import an even faster implementation of Louvain
# SB tested this on Feb 17, 2019 and it gives identical results to community in a much shorter time
# https://louvain-igraph.readthedocs.io/en/latest/reference.html
import louvain
import igraph as ig
# import community adapted to spectral null from MacMahon et al, 2015
# Code base is from https://github.com/taynaud/python-louvain
#from community_with_spectralnull import community_louvain as community_spectralnull
#importlib.reload(community_spectralnull)
# stop warnings from printing out (comment out if debugging)
import warnings as wn
wn.filterwarnings("ignore")
####################################################################
# PART 1:
# DATA CLEANING AND BASIC DATA ISOLATION FUNCTIONS
####################################################################
####################################################
def calc_timeseries_correlations(all_county_df):
# Makes a dataframe OF THE CORRELATIONS BETWEEN ALL TIMESERIES IN THE DATA
# inputs: the dataframe of county timeseries(rows: weeks, columns: counties)
# outputs: a dataframe of the correlations in the flu season county x county with 1 down diagonal
# and the dataframe of county timeseries
# calculate pearsons correlation between time series for each pair of time series
# and make NaNs and negative correlations 0 (these 0s will later be ignored)
correlation_df = all_county_df.corr(method='pearson')
correlation_df = correlation_df.fillna(0)
correlation_df = correlation_df.clip(lower=0) # make negative values 0
return correlation_df
####################################################
def create_network(correlation_df, threshold, data, state=None):
# CREATES A NETWORK FROM THE CORRELATION DATAFRAME
# INPUTS: needs the correlation df, threshold for edgeweight to be included in the network
# outputs: a graph of the correlation network
if state:
list_counties = data.state.unique()
else:
list_counties = data.county.unique()
matrix_1 = sy.sparse.lil_matrix(correlation_df) # convert correlation dataframe to matrix
matrix_1.setdiag(0) # ignore self correlations (set the diagonals = 0)
matrix_1[matrix_1 < threshold] = 0 # set anything below the threshold = 0
# Construct the network
# Note: no edges exist between counties where correlation < threshold
network = nx.from_scipy_sparse_matrix(matrix_1)
# Relabel nodes with FIPS
nodelabel_mapping = dict(zip(range(0,len(list_counties)), list_counties))
nx.relabel_nodes(network,nodelabel_mapping, copy=False)
# Remove edges that have NaN weight
to_remove = [(i,j) for i,j,d in network.edges(data=True) if math.isnan(float(d['weight']))]
network.remove_edges_from(to_remove)
return network
##################################################
# Creates nearest neighbor graph for US counties (neighbor list is based on shared borders)
def make_nn_network(fullpath, state=None):
# read neighbor lists
if state:
reader_data = csv.reader(open(fullpath+'county_neighbors_fips.txt'), delimiter=',')
neighbor_list = [(int(int(line[0])/1000), int(int(line[1])/1000)) for line in reader_data]
else:
reader_data = csv.reader(open(fullpath+'county_neighbors_fips.txt'), delimiter=',')
neighbor_list = [(int(line[0]), int(line[1])) for line in reader_data]
G_nn = nx.Graph()
for u,v in neighbor_list:
G_nn.add_edge(u,v, weight=1)
return G_nn
##################################################
# PART 2: RUN LOUVAIN COMMUNITY DETECTION ANALYSIS
##################################################
####################################################
def louvain_community_detection(network, G_nn, implementation, Cg = None, nodelabel_map=None):
# Runs Louvain community detection algorithm on weighted network
# If using 'louvain_spectralnull', need to provie Cg matrix
if implementation == 'louvain_community':
partition = community.best_partition(network, weight='weight')
elif implementation == 'louvain_igraph': # fastest
# convert to igraph
edges = [(e1,e2,a['weight']) for e1,e2, a in network.edges(data=True)]
graph_ig = ig.Graph.TupleList(edges, directed=False, weights=True, vertex_name_attr='name')
ws = [e["weight"] for e in graph_ig.es()]
part = louvain.find_partition(graph_ig, louvain.ModularityVertexPartition, weights = ws)
# convert result to dictionary
partition = {}
for comm_id,comm_members in enumerate(part):
comm_member_names = [graph_ig.vs[c]["name"] for c in comm_members]
partition.update({c: comm_id for c in comm_member_names})
#elif implementation == 'louvain_spectralnull':
# code not complete, need to adapt method for induced graph (Dec 2022)
#partition = community_spectralnull.best_partition(graph=network, Cg=Cg, nodelabel_map=nodelabel_map, weight='weight')
# make sure all nodes are in partition (if any missing, add as NaNs)
m1 = [n for n in list(network.nodes()) if n not in partition.keys()]
m2 = ([n for n in list(G_nn.nodes()) if n not in partition.keys()])
missing_nodes = m1 + m2
missing_nodes = list(set(missing_nodes))
partition.update({m: float('NaN') for m in missing_nodes})
return partition
####################################################
def reduce_num_communities(partition, thresh):
# REDUCES COMMUNITIES SMALLER THAN THRESH BY REMOVING THEM, and relabel modularity class to be consecutive
# Partition is dictionary with key: nodeid, value: community id
# find the community sizes of each community
uniq_comms = list(set(partition.values()))
uniq_comms = [u for u in uniq_comms if float(u) != float('NaN')]
comm_size = {i:len([node for node, part in partition.items() if part == i]) for i in uniq_comms} #dictionary
# find all the communties that are too small (i.e smaller than or equal to thresh nodes)
small_comm_id = [comm for comm,csize in comm_size.items() if (csize <= thresh)]
# for communities identified as "small", make all nodes have NaN as modularity class
for node in [key for key,val in partition.items() if val in small_comm_id]:
partition[node] = float('NaN')
# relabel modularity classes so that they are consecutive
current_modclass = list(set(partition.values()))
current_modclass = [int(m) for m in current_modclass if str(m) != 'nan']
new_labels = list(range(0,len(current_modclass))) # create a new set of labels for the modularity classes
label_dict = dict(zip(current_modclass, new_labels))
# convert partition dictionary to dataframe; switch labels using map;
part_df = pd.DataFrame.from_dict(partition, orient='index').reset_index()
part_df = part_df.rename(columns = {'index': 'node', 0: 'modularity_class'})
part_df['modularity_class'] = part_df['modularity_class'].map(label_dict) # relabel old labels with new labels
return part_df
##################################################
def comm_struct_robustness(G, G_nn, implementation, num_bootstrap = 10, Cg=None, nodelabel_map=None):
# This function calculates a robust community structure
# uses method of Donker/Wallinga/Slack/Grundmann "Hospital Networks and the Dispersal of Hospital-Acquired Pathogens by Patient Transfer"
# works by generating a bootstrap network with a different set of edge weights
# and re-computing the community structure on that graph
# finally the partition which has the most agreement to other partitions is chosen
# SB tested this method on Feb 17, 2019 and found that each bootstrap partition is highly similar to others
part_alt = {}
df = {}
B = {i:0 for i in range(num_bootstrap)}
for i in range(0,num_bootstrap):
G_alt = bootstrap_network_edgeweight(G)
part_alt[i] = louvain_community_detection(G_alt, G_nn, implementation, Cg, nodelabel_map)
df[i] = pd.DataFrame.from_dict(part_alt[i], orient='index').reset_index()
# Figure out how much consensus there is between each partition
pairs = list(itertools.combinations(range(0,num_bootstrap), 2))
for i,j in pairs:
# merge pair of dataframes so that they line up
df3 = pd.merge(df[i], df[j], on='index', how='inner')
df3 = df3[~df3["0_x"].isna()]
df3 = df3[~df3["0_y"].isna()]
# calculate mutual information on two partitions
nmi = normalized_mutual_info_score(df3["0_x"], df3["0_y"])
# this value measures how much consensus partition[i] has with all the others
B[i] = B[i] + nmi
#finding the key to the largest value in the dictionary
if num_bootstrap == 1:
i= 0
else:
i = max(B.items(), key=operator.itemgetter(1))[0]
return part_alt[i], df[i]
##################################################
def bootstrap_network_edgeweight(G):
# returns a network where the edge-weights are redrawn from
# a Poisson distribution with mean = eij (original edge weight)
Galt = nx.Graph()
#draw a bootstrap edge weight +/- Normal(0, 0.05)
edges = [(u,v, d['weight']+np.random.normal(loc = 0,scale = 0.05)) for u,v,d in G.edges(data=True)]
Galt.add_weighted_edges_from(edges)
return Galt
##################################################
# PART 2b: SPATIAL COMMUNITY STRUCTURE ADJUSTMENT
##################################################
##################################################
def increase_spatial_contiguity(G_nn, partition_orig, size_thresh, Q_thresh):
# contiguity = all parts of a district be physically connected; no land islands
# increases spatial cohesiveness by looking at each community and combining nodes with
# nearest neighbor communities if not connected to rest of community
# keeps going till new Qrel value is still within thresh of original Qrel value
# INPUTS: G is network, G_nn is nearest neighbor network, partition is a dataframe with node and moularity
# classes and Q_thresh is a tolerance for the reduction in modularity (Q_relative)
partition = partition_orig.copy()
# get a list of all the unique modularity classes (except 'nan')
unique_modclass = list(partition['modularity_class'].dropna().unique())
# identify geographical components of each community
components = []
for c in unique_modclass:
comm_members = partition.loc[partition['modularity_class']== float(c)]['node'].tolist() # get all nodes that have modularity_class ==c
H = G_nn.subgraph(comm_members)
# find small components (size_thresh counties or less) that are islands
comps = [comp for comp in nx.connected_components(H) if len(comp) <= size_thresh]
components.extend(comps)
# try to make graph more contiguous starting from the smallest components
for comp in components:
# get all nearest neighbors of nodes in this component
nn = [list(G_nn.neighbors(node)) for node in comp] # is list of lists
nearest_neigh= [node for l in nn for node in l if node not in comp] # collapse list of lists and remove those nodes that are in the component
nearest_neigh = list(set(nearest_neigh)) # get unique nearest neighbors
nearest_neigh_comm = partition.loc[partition.node.isin(nearest_neigh)]['modularity_class'].dropna().tolist()
if nearest_neigh_comm:
comm_common = Counter(nearest_neigh_comm).most_common()[0][0]
#print(nearest_neigh_comm, Counter(nearest_neigh_comm).most_common(), Counter(nearest_neigh_comm).most_common()[0][0])
# make all nodes in this component match most popular neighboring community
partition.loc[partition.node.isin(comp), 'modularity_class'] = comm_common
nmi = calc_mutual_information(partition_orig, partition)
print(" NMI: ", nmi)
return partition
##################################################
def fill_in_nans(G_nn, partition_orig, Q_thresh):
# contiguity = all parts of a district be physically connected; no land islands
# increases spatial cohesiveness by looking at each community and combining nodes with
# nearest neighbor communities if not connected to rest of community
# keeps going till new Qrel value is still within thresh of original Qrel value
# INPUTS: G is network, G_nn is nearest neighbor network, partition is a dataframe with node and moularity
# classes and Q_thresh is a tolerance for the reduction in modularity (Q_relative)
partition = partition_orig.copy()
# add all the components that are nan
components = []
p = partition['modularity_class'].isna()
comm_members = partition.node[p].tolist() # get all nodes that have modularity_class ==c
H = G_nn.subgraph(comm_members)
components.extend(list(nx.connected_components(H)))
# try to make graph more contiguous starting from the smallest components
for comp in components:
# get all nearest neighbors of nodes in this component
nn = [list(G_nn.neighbors(node)) for node in comp] # is list of lists
nearest_neigh= [node for l in nn for node in l if node not in comp] # collapse list of lists and remove those nodes that are in the component
nearest_neigh = list(set(nearest_neigh)) # get unique nearest neighbors
nearest_neigh_comm = partition.loc[partition.node.isin(nearest_neigh)]['modularity_class'].dropna().tolist()
if nearest_neigh_comm:
comm_common = Counter(nearest_neigh_comm).most_common()[0][0]
# make all nodes in this component match most popular neighboring community
partition.loc[partition.node.isin(comp), 'modularity_class'] = comm_common
nmi = calc_mutual_information(partition_orig, partition)
print(" NMI: ", nmi)
return partition
##################################################
# PART 3: ANALYZE COMMUNITY STRUCTURE
##################################################
#################################################################
def calc_modularity(network, part):
# calculates the Newman modularity and the relative modularity of the network
# inputs: the robust network, the louvain robust partition dictionary
# outputs: the relative q value and the q value
# Calculate Newman Modularity
Q = community.modularity(part, network, weight='weight')
# Calculate relative modularity (Sah et al, 2018, PNAS)
L = network.number_of_edges() # number of edges
unique_mod_classes = set(part.values()) # list of modularity classes
Qmax = 0
for mod in unique_mod_classes:
nodes = [n for (n,p) in part.items() if p == mod]
H = network.subgraph(nodes)
L_k = H.number_of_edges()
x = (L_k/L)
Qmax = Qmax + x*(1-x)
Qrel = Q/Qmax
return Q, Qrel
##########################################################
def calc_similarity_silhouette(node, matrix, part):
# get similarity between a given node and its community (needed for silhouette score)
#inputs: a given node, the distance matrix, partition
# outputs: the similarity of that node to the rest of the nodes in the cluster
# find community of node
nodecomm = part.loc[part['node']==node]['modularity_class'].tolist()[0]
# find other nodes in same community (and remove original node)
other_nodes_in_comm = part.loc[part['modularity_class']== nodecomm]['node'].tolist()
other_nodes_in_comm = [n for n in other_nodes_in_comm if n != node]
# calc dist to each node in same community
dists_node = matrix[node]
dists_comm = dists_node[other_nodes_in_comm].tolist() # row of distances from node to all other nodes in same comm
# calc avg distance between node and all nodes in same community
sim = np.mean(dists_comm)
return sim
###########################################################
def calc_dissimilarity_silhouette(node, matrix, part):
# get dissimilarity between a given node and its community (needed for silhouette score)
#inputs: a given node, the distance matrix, partition
#outputs: the dissimilarity of that node to the rest of the nodes
# find community of node
nodecomm = part.loc[part['node']==node]['modularity_class'].tolist()[0]
# find all other community ids
#first get a list of all mod classes in partition, then remove the mod class of node from that
mod_list = list(part['modularity_class'].unique())
cleanedlist = [x for x in mod_list if str(x) != 'nan']
other_mods = sorted(i for i in cleanedlist if i != nodecomm) #remove mod in question from all mod list
# create list of average distances to all other communities
avg_dist = []
for other_comm in other_mods:
# find nodes in other community
nodes_in_other_comm = part.loc[part['modularity_class'] == other_comm]['node'].tolist()
# calc dist from node to all nodes in this community
dists_node = matrix[node]
dists_comm = dists_node[nodes_in_other_comm].tolist() # list of distances from node to all other nodes in other comm
# avg dist from node to this community
avg_dist.append(np.mean(dists_comm))
# print(' ', avg_dist)
# dissimilarity = minimum average distance to any other community
if avg_dist:
dissim = min(avg_dist)
else:
dissim = float('NaN')
return dissim
###############################################################
def calc_silhouette(all_county_timeseries, part):
# caculate silhouette score of community partition
# inputs: dist matrix, partition dataframe
# output: mean silhouette score
# calculate euclidean distance between county timeseries
corr_df = calc_timeseries_correlations(all_county_timeseries) # calculates pearson's correlations
dist_matrix_df = 1 - corr_df # distance = 1-correlation
#print(corr_df.head())
#print(dist_matrix.head())
# get list of counties and node ids
list_counties = list(part['node'].unique())
#print(list_counties)
# for each node (i.e. county fips), calculate silhouette score
sil_dict = {}
for node in list_counties:
# calc similarity (a)
a = calc_similarity_silhouette(node, dist_matrix_df, part)
# calc dissimilarity (b)
b = calc_dissimilarity_silhouette(node, dist_matrix_df, part)
# calc silhouette ((b-a)/max(a,b))
s = (b-a)/max(a, b)
#print(node, a,b,s)
sil_dict[node] = s
# remove all Nans from silhouette score list
sil_list = sil_dict.values()
sil_list = [x for x in sil_list if str(x) != 'nan']
#get the mean silhouette score
mean_sil = np.mean(sil_list)
return mean_sil, sil_list, sil_dict
##############################################
def calc_mutual_information( df, df2):
# calculates mutual information between two partitions
# input: two filenames which contain partitions (fips, modularity_class)
# need to make sure both partitions are ordered the same way
# (using inner to eliminate any fips missing in either partition)
# (The merge will create two columns modularity_class_x and modularity_class_y)
df3 = pd.merge(df, df2, on='node', how='inner')
# drop rows with NaNs; convert mods to ints
df3 = df3.dropna(how='any')
df3["modularity_class_x"] = df3["modularity_class_x"].astype(int)
df3["modularity_class_y"] = df3["modularity_class_y"].astype(int)
# calc match between paritionss
numlist = len(list(df3.modularity_class_x))
if numlist:
match = sum([1 for a,b in zip(df3.modularity_class_x, df3.modularity_class_y) if a==b])/float(numlist) # print matches
else:
match= 0
nmi = normalized_mutual_info_score(df3.modularity_class_x, df3.modularity_class_y)
return nmi, match
##################################################
# PART 5: OUTPUTTING RESULTS
##################################################
##################################################
def relabel_clusters(partition):
# RELABEL CLUSTERS SO THAT COLORS MATCH MAIN RESULTS
part = partition
# rename clusters into something else temporarily
part.loc[part.modularity_class == 1, 'modularity_class'] = 'old_1'
part.loc[part.modularity_class == 2, 'modularity_class'] = 'old_2'
# rename clusters
part.loc[part.modularity_class == 'old_1', 'modularity_class'] = 2
part.loc[part.modularity_class == 'old_2', 'modularity_class'] = 1
partition = part
return partition
##################################################
# function to plot timeseries by community
def plot_timeseries(df, partition, filename, year_of_analysis, num_clusters, ylim):
unique_modclass = list(partition['modularity_class'].unique())
unique_modclass = [int(m) for m in unique_modclass if str(m) != 'nan']
unique_modclass.sort()
colors = ['#a6cee3','#1f78b4','#b2df8a','#33a02c', '#d95f02', '#7570b3', '#e7298a']
# Plot timeseries
hfont = {'fontname':'Helvetica'}
fig, axes = plt.subplots(2, int(np.ceil(num_clusters/2)), figsize=(20,20))
axes = axes.ravel()
# for separate figure with all the averages
#fig, ax2 = plt.subplots(figsize=(10,10))
for mod in unique_modclass:
# find nodes in ters community and get timeseries for just those nodes
nodes_in_cluster = list(partition[partition.modularity_class == mod]['node'])
flu_timeseries_mod = df[nodes_in_cluster]
# plot all county timeseries (transparent)
flu_timeseries_mod.plot(legend=False, color = colors[mod], alpha = 0.05, linewidth = 0.5, zorder = 8, ax=axes[mod])
# plot smoothed average (opaque) for community
flu_timeseries_mod_avg = flu_timeseries_mod.mean(axis=1)
flu_timeseries_mod_avg.plot(legend=False, color = colors[mod], alpha = 1, linewidth = 4, zorder = 15, ax=axes[mod]);
# put all the averages on one separate plot
#flu_timeseries_mod_avg.plot(legend=False, color = colors[mod], alpha = 1, linewidth = 4, zorder = 15, ax=ax2);
#axes[mod].set_title('Community '+str(mod),fontsize = 20)
#axes[mod].set_xlabel("Week", fontsize = 20, **hfont)
axes[mod].set_ylabel("Indoor Activity Seasonality", fontsize = 20, **hfont)
axes[mod].tick_params(axis='x', labelsize= 16)
axes[mod].tick_params(axis='y', labelsize= 16)
axes[mod].set_ylim(ylim);
if len(year_of_analysis) == 1:
axes[mod].set_xticks([1, 5,9,14,18,23,27,31,36,40,44,49])
axes[mod].set_xticklabels(['Jan', 'Feb', 'Mar', 'Apr', 'May', 'Jun', 'Jul', 'Aug', 'Sep', 'Oct', 'Nov', 'Dec'])
elif len(year_of_analysis) == 2:
axes[mod].set_xticks([1, 13, 26, 40, 53, 66, 79, 92])
axes[mod].set_xticklabels(['Jan\n2018', 'Apr', 'Jul', 'Oct', 'Jan\n2019', 'Apr', 'Jul', 'Oct'])
plt.savefig("timeseries_plot_"+str(filename)+'.png')
return
##################################################
# function to plot county-level map with counties colored by community/module
def make_module_map(part_df, filename):
with urlopen('https://raw.githubusercontent.com/plotly/datasets/master/geojson-counties-fips.json') as response:
counties = json.load(response)
part_df2 = part_df.copy()
part_df2['node'] = part_df2.node.astype(str).str.zfill(5)
part_df2 = part_df2[~part_df2.modularity_class.isna()]
part_df2['modularity_class'] = part_df2.modularity_class.astype(int)
part_df2['modularity_class'] = part_df2.modularity_class.replace(0, 'A')
part_df2['modularity_class'] = part_df2.modularity_class.replace(1, 'B')
part_df2['modularity_class'] = part_df2.modularity_class.replace(2, 'C')
part_df2['modularity_class'] = part_df2.modularity_class.replace(3, 'D')
fig = px.choropleth(part_df2, # name of your dataframe
geojson=counties,
locations='node', # name of column in df that has the county fips
color='modularity_class', # name of column in df that has the data you want to plot
color_discrete_map={"A":'#a6cee3',"B":'#1f78b4',"C":'#b2df8a',"D":'#33a02c'},#px.colors.qualitative.Safe,
scope='usa',
)
fig.update_traces(marker_line_width=0.1, # controls county border line width
marker_opacity=0.85, # changes fill color opacity to let state borders through
marker_line_color='#262626', # controls county border color; needs to be darker than "states"
)
fig.update_layout(coloraxis_showscale=False, showlegend=False)
fig.show()
fig.write_image("modulemap_"+str(filename)+".png", scale=10, engine = 'kaleido')
return