#define _DEFAULT_SOURCE #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "mvt.hpp" #include "projection.hpp" #include "pool.hpp" #include "mbtiles.hpp" #include "geometry.hpp" #include "dirtiles.hpp" #include "evaluator.hpp" #include "csv.hpp" #include #include #include #include #include "jsonpull/jsonpull.h" #include "milo/dtoa_milo.h" int pk = false; int pC = false; int pg = false; size_t CPUS; int quiet = false; int maxzoom = 32; int minzoom = 0; std::map renames; struct stats { int minzoom; int maxzoom; double midlat, midlon; double minlat, minlon, maxlat, maxlon; }; void aprintf(std::string *buf, const char *format, ...) { va_list ap; char *tmp; va_start(ap, format); if (vasprintf(&tmp, format, ap) < 0) { fprintf(stderr, "memory allocation failure\n"); exit(EXIT_FAILURE); } va_end(ap); buf->append(tmp, strlen(tmp)); free(tmp); } void handle(std::string message, int z, unsigned x, unsigned y, std::map &layermap, std::vector &header, std::map> &mapping, std::set &exclude, std::set &keep_layers, std::set &remove_layers, int ifmatched, mvt_tile &outtile, json_object *filter) { mvt_tile tile; int features_added = 0; bool was_compressed; if (!tile.decode(message, was_compressed)) { fprintf(stderr, "Couldn't decompress tile %d/%u/%u\n", z, x, y); exit(EXIT_FAILURE); } for (size_t l = 0; l < tile.layers.size(); l++) { mvt_layer &layer = tile.layers[l]; auto found = renames.find(layer.name); if (found != renames.end()) { layer.name = found->second; } if (keep_layers.size() > 0 && keep_layers.count(layer.name) == 0) { continue; } if (remove_layers.count(layer.name) != 0) { continue; } size_t ol; for (ol = 0; ol < outtile.layers.size(); ol++) { if (tile.layers[l].name == outtile.layers[ol].name) { break; } } if (ol == outtile.layers.size()) { outtile.layers.push_back(mvt_layer()); outtile.layers[ol].name = layer.name; outtile.layers[ol].version = layer.version; outtile.layers[ol].extent = layer.extent; } mvt_layer &outlayer = outtile.layers[ol]; if (layer.extent != outlayer.extent) { if (layer.extent > outlayer.extent) { for (size_t i = 0; i < outlayer.features.size(); i++) { for (size_t j = 0; j < outlayer.features[i].geometry.size(); j++) { outlayer.features[i].geometry[j].x = outlayer.features[i].geometry[j].x * layer.extent / outlayer.extent; outlayer.features[i].geometry[j].y = outlayer.features[i].geometry[j].y * layer.extent / outlayer.extent; } } outlayer.extent = layer.extent; } } auto file_keys = layermap.find(layer.name); for (size_t f = 0; f < layer.features.size(); f++) { mvt_feature feat = layer.features[f]; if (filter != NULL) { std::map attributes; for (size_t t = 0; t + 1 < feat.tags.size(); t += 2) { std::string key = layer.keys[feat.tags[t]]; mvt_value &val = layer.values[feat.tags[t + 1]]; attributes.insert(std::pair(key, val)); } if (feat.has_id) { mvt_value v; v.type = mvt_uint; v.numeric_value.uint_value = feat.id; attributes.insert(std::pair("$id", v)); } mvt_value v; v.type = mvt_string; if (feat.type == mvt_point) { v.string_value = "Point"; } else if (feat.type == mvt_linestring) { v.string_value = "LineString"; } else if (feat.type == mvt_polygon) { v.string_value = "Polygon"; } attributes.insert(std::pair("$type", v)); if (!evaluate(attributes, layer.name, filter)) { continue; } } mvt_feature outfeature; int matched = 0; if (feat.has_id) { outfeature.has_id = true; outfeature.id = feat.id; } std::map> attributes; std::vector key_order; for (size_t t = 0; t + 1 < feat.tags.size(); t += 2) { const char *key = layer.keys[feat.tags[t]].c_str(); mvt_value &val = layer.values[feat.tags[t + 1]]; std::string value; int type = -1; if (val.type == mvt_string) { value = val.string_value; type = mvt_string; } else if (val.type == mvt_int) { aprintf(&value, "%lld", (long long) val.numeric_value.int_value); type = mvt_double; } else if (val.type == mvt_double) { aprintf(&value, "%s", milo::dtoa_milo(val.numeric_value.double_value).c_str()); type = mvt_double; } else if (val.type == mvt_float) { aprintf(&value, "%s", milo::dtoa_milo(val.numeric_value.float_value).c_str()); type = mvt_double; } else if (val.type == mvt_bool) { aprintf(&value, "%s", val.numeric_value.bool_value ? "true" : "false"); type = mvt_bool; } else if (val.type == mvt_sint) { aprintf(&value, "%lld", (long long) val.numeric_value.sint_value); type = mvt_double; } else if (val.type == mvt_uint) { aprintf(&value, "%llu", (long long) val.numeric_value.uint_value); type = mvt_double; } else { continue; } if (type < 0) { continue; } if (exclude.count(std::string(key)) == 0) { type_and_string tas; tas.type = type; tas.string = value; attributes.insert(std::pair>(key, std::pair(val, tas))); key_order.push_back(key); } if (header.size() > 0 && strcmp(key, header[0].c_str()) == 0) { std::map>::iterator ii = mapping.find(value); if (ii != mapping.end()) { std::vector fields = ii->second; matched = 1; for (size_t i = 1; i < fields.size(); i++) { std::string joinkey = header[i]; std::string joinval = fields[i]; int attr_type = mvt_string; if (joinval.size() > 0) { if (joinval[0] == '"') { joinval = csv_dequote(joinval); } else if (is_number(joinval)) { attr_type = mvt_double; } } const char *sjoinkey = joinkey.c_str(); if (exclude.count(joinkey) == 0) { mvt_value outval; if (attr_type == mvt_string) { outval.type = mvt_string; outval.string_value = joinval; } else { outval.type = mvt_double; outval.numeric_value.double_value = atof(joinval.c_str()); } auto fa = attributes.find(sjoinkey); if (fa != attributes.end()) { attributes.erase(fa); } type_and_string tas; tas.type = outval.type; tas.string = joinval; // Convert from double to int if the joined attribute is an integer outval = stringified_to_mvt_value(outval.type, joinval.c_str()); attributes.insert(std::pair>(joinkey, std::pair(outval, tas))); key_order.push_back(joinkey); } } } } } if (matched || !ifmatched) { if (file_keys == layermap.end()) { layermap.insert(std::pair(layer.name, layermap_entry(layermap.size()))); file_keys = layermap.find(layer.name); file_keys->second.minzoom = z; file_keys->second.maxzoom = z; } // To keep attributes in their original order instead of alphabetical for (auto k : key_order) { auto fa = attributes.find(k); if (fa != attributes.end()) { outlayer.tag(outfeature, k, fa->second.first); add_to_file_keys(file_keys->second.file_keys, k, fa->second.second); attributes.erase(fa); } } outfeature.type = feat.type; outfeature.geometry = feat.geometry; if (layer.extent != outlayer.extent) { for (size_t i = 0; i < outfeature.geometry.size(); i++) { outfeature.geometry[i].x = outfeature.geometry[i].x * outlayer.extent / layer.extent; outfeature.geometry[i].y = outfeature.geometry[i].y * outlayer.extent / layer.extent; } } features_added++; outlayer.features.push_back(outfeature); if (z < file_keys->second.minzoom) { file_keys->second.minzoom = z; } if (z > file_keys->second.maxzoom) { file_keys->second.maxzoom = z; } if (feat.type == mvt_point) { file_keys->second.points++; } else if (feat.type == mvt_linestring) { file_keys->second.lines++; } else if (feat.type == mvt_polygon) { file_keys->second.polygons++; } } } } if (features_added == 0) { return; } } double min(double a, double b) { if (a < b) { return a; } else { return b; } } double max(double a, double b) { if (a > b) { return a; } else { return b; } } struct reader { long long zoom = 0; long long x = 0; long long sorty = 0; long long y = 0; int z_flag = 0; std::string data = ""; std::vector dirtiles; std::string dirbase; sqlite3 *db = NULL; sqlite3_stmt *stmt = NULL; struct reader *next = NULL; bool operator<(const struct reader &r) const { if (zoom < r.zoom) { return true; } if (zoom > r.zoom) { return false; } if (x < r.x) { return true; } if (x > r.x) { return false; } if (sorty < r.sorty) { return true; } if (sorty > r.sorty) { return false; } if (data < r.data) { return true; } return false; } }; struct reader *begin_reading(char *fname) { struct reader *r = new reader; struct stat st; if (stat(fname, &st) == 0 && (st.st_mode & S_IFDIR) != 0) { r->db = NULL; r->stmt = NULL; r->next = NULL; r->dirtiles = enumerate_dirtiles(fname); r->dirbase = fname; if (r->dirtiles.size() == 0) { r->zoom = 32; } else { r->zoom = r->dirtiles[0].z; r->x = r->dirtiles[0].x; r->y = r->dirtiles[0].y; r->sorty = (1LL << r->zoom) - 1 - r->y; r->data = dir_read_tile(r->dirbase, r->dirtiles[0]); r->dirtiles.erase(r->dirtiles.begin()); } } else { sqlite3 *db; if (sqlite3_open(fname, &db) != SQLITE_OK) { fprintf(stderr, "%s: %s\n", fname, sqlite3_errmsg(db)); exit(EXIT_FAILURE); } const char *sql = "SELECT zoom_level, tile_column, tile_row, tile_data from tiles order by zoom_level, tile_column, tile_row;"; sqlite3_stmt *stmt; if (sqlite3_prepare_v2(db, sql, -1, &stmt, NULL) != SQLITE_OK) { fprintf(stderr, "%s: select failed: %s\n", fname, sqlite3_errmsg(db)); exit(EXIT_FAILURE); } r->db = db; r->stmt = stmt; r->next = NULL; if (sqlite3_step(stmt) == SQLITE_ROW) { r->zoom = sqlite3_column_int(stmt, 0); r->x = sqlite3_column_int(stmt, 1); r->sorty = sqlite3_column_int(stmt, 2); r->y = (1LL << r->zoom) - 1 - r->sorty; const char *data = (const char *) sqlite3_column_blob(stmt, 3); size_t len = sqlite3_column_bytes(stmt, 3); r->data = std::string(data, len); } else { r->zoom = 32; } } return r; } struct arg { std::map> inputs{}; std::map outputs{}; std::map *layermap = NULL; std::vector *header = NULL; std::map> *mapping = NULL; std::set *exclude = NULL; std::set *keep_layers = NULL; std::set *remove_layers = NULL; int ifmatched = 0; json_object *filter = NULL; }; void *join_worker(void *v) { arg *a = (arg *) v; for (auto ai = a->inputs.begin(); ai != a->inputs.end(); ++ai) { mvt_tile tile; for (size_t i = 0; i < ai->second.size(); i++) { handle(ai->second[i], ai->first.z, ai->first.x, ai->first.y, *(a->layermap), *(a->header), *(a->mapping), *(a->exclude), *(a->keep_layers), *(a->remove_layers), a->ifmatched, tile, a->filter); } ai->second.clear(); bool anything = false; mvt_tile outtile; for (size_t i = 0; i < tile.layers.size(); i++) { if (tile.layers[i].features.size() > 0) { outtile.layers.push_back(tile.layers[i]); anything = true; } } if (anything) { std::string pbf = outtile.encode(); std::string compressed; if (!pC) { compress(pbf, compressed); } else { compressed = pbf; } if (!pk && compressed.size() > 500000) { fprintf(stderr, "Tile %lld/%lld/%lld size is %lld, >500000. Skipping this tile\n.", ai->first.z, ai->first.x, ai->first.y, (long long) compressed.size()); } else { a->outputs.insert(std::pair(ai->first, compressed)); } } } return NULL; } void handle_tasks(std::map> &tasks, std::vector> &layermaps, sqlite3 *outdb, const char *outdir, std::vector &header, std::map> &mapping, std::set &exclude, int ifmatched, std::set &keep_layers, std::set &remove_layers, json_object *filter) { pthread_t pthreads[CPUS]; std::vector args; for (size_t i = 0; i < CPUS; i++) { args.push_back(arg()); args[i].layermap = &layermaps[i]; args[i].header = &header; args[i].mapping = &mapping; args[i].exclude = &exclude; args[i].keep_layers = &keep_layers; args[i].remove_layers = &remove_layers; args[i].ifmatched = ifmatched; args[i].filter = filter; } size_t count = 0; // This isn't careful about distributing tasks evenly across CPUs, // but, from testing, it actually takes a little longer to do // the proper allocation than is saved by perfectly balanced threads. for (auto ai = tasks.begin(); ai != tasks.end(); ++ai) { args[count].inputs.insert(*ai); count = (count + 1) % CPUS; if (ai == tasks.begin()) { if (!quiet) { fprintf(stderr, "%lld/%lld/%lld \r", ai->first.z, ai->first.x, ai->first.y); } } } for (size_t i = 0; i < CPUS; i++) { if (pthread_create(&pthreads[i], NULL, join_worker, &args[i]) != 0) { perror("pthread_create"); exit(EXIT_FAILURE); } } for (size_t i = 0; i < CPUS; i++) { void *retval; if (pthread_join(pthreads[i], &retval) != 0) { perror("pthread_join"); } for (auto ai = args[i].outputs.begin(); ai != args[i].outputs.end(); ++ai) { if (outdb != NULL) { mbtiles_write_tile(outdb, ai->first.z, ai->first.x, ai->first.y, ai->second.data(), ai->second.size()); } else if (outdir != NULL) { dir_write_tile(outdir, ai->first.z, ai->first.x, ai->first.y, ai->second); } } } } void decode(struct reader *readers, std::map &layermap, sqlite3 *outdb, const char *outdir, struct stats *st, std::vector &header, std::map> &mapping, std::set &exclude, int ifmatched, std::string &attribution, std::string &description, std::set &keep_layers, std::set &remove_layers, std::string &name, json_object *filter) { std::vector> layermaps; for (size_t i = 0; i < CPUS; i++) { layermaps.push_back(std::map()); } std::map> tasks; double minlat = INT_MAX; double minlon = INT_MAX; double maxlat = INT_MIN; double maxlon = INT_MIN; int zoom_for_bbox = -1; while (readers != NULL && readers->zoom < 32) { reader *r = readers; readers = readers->next; r->next = NULL; if (r->zoom != zoom_for_bbox) { // Only use highest zoom for bbox calculation // to avoid z0 always covering the world minlat = minlon = INT_MAX; maxlat = maxlon = INT_MIN; zoom_for_bbox = r->zoom; } double lat1, lon1, lat2, lon2; tile2lonlat(r->x, r->y, r->zoom, &lon1, &lat1); tile2lonlat(r->x + 1, r->y + 1, r->zoom, &lon2, &lat2); minlat = min(lat2, minlat); minlon = min(lon1, minlon); maxlat = max(lat1, maxlat); maxlon = max(lon2, maxlon); if (r->zoom >= minzoom && r->zoom <= maxzoom) { zxy tile = zxy(r->zoom, r->x, r->y); if (tasks.count(tile) == 0) { tasks.insert(std::pair>(tile, std::vector())); } auto f = tasks.find(tile); f->second.push_back(r->data); } if (readers == NULL || readers->zoom != r->zoom || readers->x != r->x || readers->y != r->y) { if (tasks.size() > 100 * CPUS) { handle_tasks(tasks, layermaps, outdb, outdir, header, mapping, exclude, ifmatched, keep_layers, remove_layers, filter); tasks.clear(); } } if (r->db != NULL) { if (sqlite3_step(r->stmt) == SQLITE_ROW) { r->zoom = sqlite3_column_int(r->stmt, 0); r->x = sqlite3_column_int(r->stmt, 1); r->sorty = sqlite3_column_int(r->stmt, 2); r->y = (1LL << r->zoom) - 1 - r->sorty; const char *data = (const char *) sqlite3_column_blob(r->stmt, 3); size_t len = sqlite3_column_bytes(r->stmt, 3); r->data = std::string(data, len); } else { r->zoom = 32; } } else { if (r->dirtiles.size() == 0) { r->zoom = 32; } else { r->zoom = r->dirtiles[0].z; r->x = r->dirtiles[0].x; r->y = r->dirtiles[0].y; r->sorty = (1LL << r->zoom) - 1 - r->y; r->data = dir_read_tile(r->dirbase, r->dirtiles[0]); r->dirtiles.erase(r->dirtiles.begin()); } } struct reader **rr; for (rr = &readers; *rr != NULL; rr = &((*rr)->next)) { if (*r < **rr) { break; } } r->next = *rr; *rr = r; } st->minlon = min(minlon, st->minlon); st->maxlon = max(maxlon, st->maxlon); st->minlat = min(minlat, st->minlat); st->maxlat = max(maxlat, st->maxlat); handle_tasks(tasks, layermaps, outdb, outdir, header, mapping, exclude, ifmatched, keep_layers, remove_layers, filter); layermap = merge_layermaps(layermaps); struct reader *next; for (struct reader *r = readers; r != NULL; r = next) { next = r->next; sqlite3 *db = r->db; if (db == NULL) { db = dirmeta2tmp(r->dirbase.c_str()); } else { sqlite3_finalize(r->stmt); } if (sqlite3_prepare_v2(db, "SELECT value from metadata where name = 'minzoom'", -1, &r->stmt, NULL) == SQLITE_OK) { if (sqlite3_step(r->stmt) == SQLITE_ROW) { int minz = max(sqlite3_column_int(r->stmt, 0), minzoom); st->minzoom = min(st->minzoom, minz); } sqlite3_finalize(r->stmt); } if (sqlite3_prepare_v2(db, "SELECT value from metadata where name = 'maxzoom'", -1, &r->stmt, NULL) == SQLITE_OK) { if (sqlite3_step(r->stmt) == SQLITE_ROW) { int maxz = min(sqlite3_column_int(r->stmt, 0), maxzoom); st->maxzoom = max(st->maxzoom, maxz); } sqlite3_finalize(r->stmt); } if (sqlite3_prepare_v2(db, "SELECT value from metadata where name = 'center'", -1, &r->stmt, NULL) == SQLITE_OK) { if (sqlite3_step(r->stmt) == SQLITE_ROW) { const unsigned char *s = sqlite3_column_text(r->stmt, 0); if (s != NULL) { sscanf((char *) s, "%lf,%lf", &st->midlon, &st->midlat); } } sqlite3_finalize(r->stmt); } if (sqlite3_prepare_v2(db, "SELECT value from metadata where name = 'attribution'", -1, &r->stmt, NULL) == SQLITE_OK) { if (sqlite3_step(r->stmt) == SQLITE_ROW) { const unsigned char *s = sqlite3_column_text(r->stmt, 0); if (s != NULL) { attribution = std::string((char *) s); } } sqlite3_finalize(r->stmt); } if (sqlite3_prepare_v2(db, "SELECT value from metadata where name = 'description'", -1, &r->stmt, NULL) == SQLITE_OK) { if (sqlite3_step(r->stmt) == SQLITE_ROW) { const unsigned char *s = sqlite3_column_text(r->stmt, 0); if (s != NULL) { description = std::string((char *) s); } } sqlite3_finalize(r->stmt); } if (sqlite3_prepare_v2(db, "SELECT value from metadata where name = 'name'", -1, &r->stmt, NULL) == SQLITE_OK) { if (sqlite3_step(r->stmt) == SQLITE_ROW) { const unsigned char *s = sqlite3_column_text(r->stmt, 0); if (s != NULL) { if (name.size() == 0) { name = std::string((char *) s); } else { name += " + " + std::string((char *) s); } } } sqlite3_finalize(r->stmt); } if (sqlite3_prepare_v2(db, "SELECT value from metadata where name = 'bounds'", -1, &r->stmt, NULL) == SQLITE_OK) { if (sqlite3_step(r->stmt) == SQLITE_ROW) { const unsigned char *s = sqlite3_column_text(r->stmt, 0); if (s != NULL) { if (sscanf((char *) s, "%lf,%lf,%lf,%lf", &minlon, &minlat, &maxlon, &maxlat) == 4) { st->minlon = min(minlon, st->minlon); st->maxlon = max(maxlon, st->maxlon); st->minlat = min(minlat, st->minlat); st->maxlat = max(maxlat, st->maxlat); } } } sqlite3_finalize(r->stmt); } // Closes either real db or temp mirror of metadata.json if (sqlite3_close(db) != SQLITE_OK) { fprintf(stderr, "Could not close database: %s\n", sqlite3_errmsg(db)); exit(EXIT_FAILURE); } delete r; } } void usage(char **argv) { fprintf(stderr, "Usage: %s [-f] [-i] [-pk] [-pC] [-c joins.csv] [-x exclude ...] -o new.mbtiles source.mbtiles ...\n", argv[0]); exit(EXIT_FAILURE); } int main(int argc, char **argv) { char *out_mbtiles = NULL; char *out_dir = NULL; sqlite3 *outdb = NULL; char *csv = NULL; int force = 0; int ifmatched = 0; json_object *filter = NULL; CPUS = sysconf(_SC_NPROCESSORS_ONLN); const char *TIPPECANOE_MAX_THREADS = getenv("TIPPECANOE_MAX_THREADS"); if (TIPPECANOE_MAX_THREADS != NULL) { CPUS = atoi(TIPPECANOE_MAX_THREADS); } if (CPUS < 1) { CPUS = 1; } std::vector header; std::map> mapping; std::set exclude; std::set keep_layers; std::set remove_layers; std::string set_name, set_description, set_attribution; struct option long_options[] = { {"output", required_argument, 0, 'o'}, {"output-to-directory", required_argument, 0, 'e'}, {"force", no_argument, 0, 'f'}, {"if-matched", no_argument, 0, 'i'}, {"attribution", required_argument, 0, 'A'}, {"name", required_argument, 0, 'n'}, {"description", required_argument, 0, 'N'}, {"prevent", required_argument, 0, 'p'}, {"csv", required_argument, 0, 'c'}, {"exclude", required_argument, 0, 'x'}, {"layer", required_argument, 0, 'l'}, {"exclude-layer", required_argument, 0, 'L'}, {"quiet", no_argument, 0, 'q'}, {"maximum-zoom", required_argument, 0, 'z'}, {"minimum-zoom", required_argument, 0, 'Z'}, {"feature-filter-file", required_argument, 0, 'J'}, {"feature-filter", required_argument, 0, 'j'}, {"rename-layer", required_argument, 0, 'R'}, {"no-tile-size-limit", no_argument, &pk, 1}, {"no-tile-compression", no_argument, &pC, 1}, {"no-tile-stats", no_argument, &pg, 1}, {0, 0, 0, 0}, }; std::string getopt_str; for (size_t lo = 0; long_options[lo].name != NULL; lo++) { if (long_options[lo].val > ' ') { getopt_str.push_back(long_options[lo].val); if (long_options[lo].has_arg == required_argument) { getopt_str.push_back(':'); } } } extern int optind; extern char *optarg; int i; while ((i = getopt_long(argc, argv, getopt_str.c_str(), long_options, NULL)) != -1) { switch (i) { case 0: break; case 'o': out_mbtiles = optarg; break; case 'e': out_dir = optarg; break; case 'f': force = 1; break; case 'i': ifmatched = 1; break; case 'A': set_attribution = optarg; break; case 'n': set_name = optarg; break; case 'N': set_description = optarg; break; case 'z': maxzoom = atoi(optarg); break; case 'Z': minzoom = atoi(optarg); break; case 'J': filter = read_filter(optarg); break; case 'j': filter = parse_filter(optarg); break; case 'p': if (strcmp(optarg, "k") == 0) { pk = true; } else if (strcmp(optarg, "C") == 0) { pC = true; } else if (strcmp(optarg, "g") == 0) { pg = true; } else { fprintf(stderr, "%s: Unknown option for -p%s\n", argv[0], optarg); exit(EXIT_FAILURE); } break; case 'c': if (csv != NULL) { fprintf(stderr, "Only one -c for now\n"); exit(EXIT_FAILURE); } csv = optarg; readcsv(csv, header, mapping); break; case 'x': exclude.insert(std::string(optarg)); break; case 'l': keep_layers.insert(std::string(optarg)); break; case 'L': remove_layers.insert(std::string(optarg)); break; case 'R': { char *cp = strchr(optarg, ':'); if (cp == NULL || cp == optarg) { fprintf(stderr, "%s: -R requires old:new\n", argv[0]); exit(EXIT_FAILURE); } std::string before = std::string(optarg).substr(0, cp - optarg); std::string after = std::string(cp + 1); renames.insert(std::pair(before, after)); break; } case 'q': quiet = true; break; default: usage(argv); } } if (argc - optind < 1) { usage(argv); } if (out_mbtiles == NULL && out_dir == NULL) { fprintf(stderr, "%s: must specify -o out.mbtiles or -e directory\n", argv[0]); usage(argv); } if (out_mbtiles != NULL && out_dir != NULL) { fprintf(stderr, "%s: Options -o and -e cannot be used together\n", argv[0]); usage(argv); } if (out_mbtiles != NULL) { if (force) { unlink(out_mbtiles); } outdb = mbtiles_open(out_mbtiles, argv, 0); } if (out_dir != NULL) { check_dir(out_dir, force, false); } struct stats st; memset(&st, 0, sizeof(st)); st.minzoom = st.minlat = st.minlon = INT_MAX; st.maxzoom = st.maxlat = st.maxlon = INT_MIN; std::map layermap; std::string attribution; std::string description; std::string name; struct reader *readers = NULL; for (i = optind; i < argc; i++) { reader *r = begin_reading(argv[i]); struct reader **rr; for (rr = &readers; *rr != NULL; rr = &((*rr)->next)) { if (*r < **rr) { break; } } r->next = *rr; *rr = r; } decode(readers, layermap, outdb, out_dir, &st, header, mapping, exclude, ifmatched, attribution, description, keep_layers, remove_layers, name, filter); if (set_attribution.size() != 0) { attribution = set_attribution; } if (set_description.size() != 0) { description = set_description; } if (set_name.size() != 0) { name = set_name; } mbtiles_write_metadata(outdb, out_dir, name.c_str(), st.minzoom, st.maxzoom, st.minlat, st.minlon, st.maxlat, st.maxlon, st.midlat, st.midlon, 0, attribution.size() != 0 ? attribution.c_str() : NULL, layermap, true, description.c_str(), !pg); if (outdb != NULL) { mbtiles_close(outdb, argv[0]); } if (filter != NULL) { json_free(filter); } return 0; }