#' Gillespie algorithm for mRNA generating processes #' #' Gillespie algorithms allow synthetic data simulation via three different #' underlying mRNA generating processes: the basic process consists of a #' simple death-birth model of mRNA transcription and degradation; the #' switching process considers additionally gene activation and deactivation, #' with mRNA transcription only happening in active gene states; the #' bursting process, transcribes mRNA in bursts with geometrically distributed burst sizes. #' #' @param n Number of observations #' @param r.degr mRNA degradation rate (all models) #' @param r.act DNA activation rate (Switching Model) #' @param r.deact DNA deactivation rate (Switching Model) #' @param r.on Transcription rate during gene activation (Switching model) #' @param r.burst Bursty transcription rate (Bursting model) #' @param s.burst Mean burst size (Bursting Model) #' @name gmRNA #' @rdname gmRNA #' @export #' @examples #' x <- gmRNA_basic(100, 0.75, 0.001) #' plot(density(x)) gmRNA_basic <- function(n, r.on, r.degr) { cpp_gmRNA_basic(n, r.on, r.degr) } #' @rdname gmRNA #' @export #' @examples #' x <- gmRNA_switch(100, 0.23, 0.15, 0.75, 0.001) #' plot(density(x)) gmRNA_switch <- function(n, r.act, r.deact, r.on, r.degr) { cpp_gmRNA_switch(n, r.act, r.deact, r.on, r.degr) } #' @rdname gmRNA #' @export #' @examples #' x <- gmRNA_burst(10, 0.15, 0.75, 0.001) #' plot(density(x)) gmRNA_burst <- function(n, r.burst, s.burst, r.degr) { cpp_gmRNA_burst(n, r.burst, s.burst, r.degr) }