require import Distr Real StdOrder. (*---*) import RealOrder. op max (x y : real) = if x <= y then y else x. type t. (* We want the bad event to be defined on both sides, * * so we assume that all the variables that are used * * to define victory conditions and bad events are * * stored in a separate module. (Note: the empty * * signature could be instantiated with anything, * * including the concrete experiment themselves * * if their glob types match.) *) module type Mem = { }. module type Exp = { proc main(): t }. lemma Pr_split (G <: Exp) (Mem <: Mem) (A: (glob Mem) -> t -> bool) (F: (glob Mem) -> t -> bool) &m: Pr[G.main() @ &m: A (glob Mem) res /\ F (glob Mem) res] + Pr[G.main() @ &m: A (glob Mem) res /\ !F (glob Mem) res] = Pr[G.main() @ &m: A (glob Mem) res]. proof. have <-: Pr[G.main() @ &m: (A (glob Mem) res /\ F (glob Mem) res) \/ (A (glob Mem) res /\ !F (glob Mem) res)] = Pr[G.main() @ &m: A (glob Mem) res]. + by rewrite Pr [mu_eq]=> /#. by rewrite Pr [mu_disjoint]=> /#. qed. lemma FundamentalLemma (G1 <: Exp) (G2 <: Exp) (Mem <: Mem) (A: (glob Mem) -> t -> bool) (B: (glob Mem) -> t -> bool) (F: (glob Mem) -> t -> bool) &m: Pr[G1.main() @ &m: A (glob Mem) res /\ !F (glob Mem) res] = Pr[G2.main() @ &m: B (glob Mem) res /\ !F (glob Mem) res] => `|Pr[G1.main() @ &m: A (glob Mem) res] - Pr[G2.main() @ &m: B (glob Mem) res]| <= max Pr[G1.main() @ &m: F (glob Mem) res] Pr[G2.main() @ &m: F (glob Mem) res]. proof. rewrite -(Pr_split G1 Mem A F &m) -(Pr_split G2 Mem B F &m)=> ->. have ->: forall (x y z:real), x + y - (z + y) = x - z by smt(). apply (ler_trans (max Pr[G1.main() @ &m: A (glob Mem) res /\ F (glob Mem) res] Pr[G2.main() @ &m: B (glob Mem) res /\ F (glob Mem) res])). + smt(ge0_mu). have -> //: forall (x y x' y':real), x <= x' => y <= y' => max x y <= max x' y' by smt(). + by rewrite -(Pr_split G1 Mem F A &m) andbC; smt(ge0_mu). by rewrite -(Pr_split G2 Mem F B &m) andbC; smt(ge0_mu). qed.