\name{pcf.fv} \alias{pcf.fv} \title{Pair Correlation Function obtained from K Function} \description{ Estimates the pair correlation function of a point pattern, given an estimate of the K function. } \usage{ \method{pcf}{fv}(X, \dots, method="c") } \arguments{ \item{X}{ An estimate of the \eqn{K} function or one of its variants. An object of class \code{"fv"}. } \item{\dots}{ Arguments controlling the smoothing spline function \code{smooth.spline}. } \item{method}{ Letter \code{"a"}, \code{"b"}, \code{"c"} or \code{"d"} indicating the method for deriving the pair correlation function from the \code{K} function. } } \value{ A function value table (object of class \code{"fv"}, see \code{\link{fv.object}}) representing a pair correlation function. Essentially a data frame containing (at least) the variables \item{r}{the vector of values of the argument \eqn{r} at which the pair correlation function \eqn{g(r)} has been estimated } \item{pcf}{vector of values of \eqn{g(r)} } } \details{ The pair correlation function of a stationary point process is \deqn{ g(r) = \frac{K'(r)}{2\pi r} }{ g(r) = K'(r)/ ( 2 * pi * r) } where \eqn{K'(r)} is the derivative of \eqn{K(r)}, the reduced second moment function (aka ``Ripley's \eqn{K} function'') of the point process. See \code{\link{Kest}} for information about \eqn{K(r)}. For a stationary Poisson process, the pair correlation function is identically equal to 1. Values \eqn{g(r) < 1} suggest inhibition between points; values greater than 1 suggest clustering. We also apply the same definition to other variants of the classical \eqn{K} function, such as the multitype \eqn{K} functions (see \code{\link{Kcross}}, \code{\link{Kdot}}) and the inhomogeneous \eqn{K} function (see \code{\link{Kinhom}}). For all these variants, the benchmark value of \eqn{K(r) = \pi r^2}{K(r) = pi * r^2} corresponds to \eqn{g(r) = 1}. This routine computes an estimate of \eqn{g(r)} from an estimate of \eqn{K(r)} or its variants, using smoothing splines to approximate the derivative. It is a method for the generic function \code{\link{pcf}} for the class \code{"fv"}. The argument \code{X} should be an estimated \eqn{K} function, given as a function value table (object of class \code{"fv"}, see \code{\link{fv.object}}). This object should be the value returned by \code{\link{Kest}}, \code{\link{Kcross}}, \code{\link{Kmulti}} or \code{\link{Kinhom}}. The smoothing spline operations are performed by \code{\link{smooth.spline}} and \code{\link{predict.smooth.spline}} from the \code{modreg} library. Four numerical methods are available: \itemize{ \item \bold{"a"} apply smoothing to \eqn{K(r)}, estimate its derivative, and plug in to the formula above; \item \bold{"b"} apply smoothing to \eqn{Y(r) = \frac{K(r)}{2 \pi r}}{Y(r) = K(r)/(2 * pi * r)} constraining \eqn{Y(0) = 0}, estimate the derivative of \eqn{Y}, and solve; \item \bold{"c"} apply smoothing to \eqn{Z(r) = \frac{K(r)}{\pi r^2}}{Y(r) = K(r)/(pi * r^2)} constraining \eqn{Z(0)=1}, estimate its derivative, and solve. \item \bold{"d"} apply smoothing to \eqn{V(r) = \sqrt{K(r)}}{V(r) = sqrt(K(r))}, estimate its derivative, and solve. } Method \code{"c"} seems to be the best at suppressing variability for small values of \eqn{r}. However it effectively constrains \eqn{g(0) = 1}. If the point pattern seems to have inhibition at small distances, you may wish to experiment with method \code{"b"} which effectively constrains \eqn{g(0)=0}. Method \code{"a"} seems comparatively unreliable. Useful arguments to control the splines include the smoothing tradeoff parameter \code{spar} and the degrees of freedom \code{df}. See \code{\link{smooth.spline}} for details. } \references{ Stoyan, D, Kendall, W.S. and Mecke, J. (1995) \emph{Stochastic geometry and its applications}. 2nd edition. Springer Verlag. Stoyan, D. and Stoyan, H. (1994) Fractals, random shapes and point fields: methods of geometrical statistics. John Wiley and Sons. } \seealso{ \code{\link{pcf}}, \code{\link{pcf.ppp}}, \code{\link{Kest}}, \code{\link{Kinhom}}, \code{\link{Kcross}}, \code{\link{Kdot}}, \code{\link{Kmulti}}, \code{\link{alltypes}}, \code{\link{smooth.spline}}, \code{\link{predict.smooth.spline}} } \examples{ # univariate point pattern X <- simdat \testonly{ X <- X[seq(1,npoints(X), by=4)] } K <- Kest(X) p <- pcf.fv(K, spar=0.5, method="b") plot(p, main="pair correlation function for simdat") # indicates inhibition at distances r < 0.3 } \author{ \spatstatAuthors. } \keyword{spatial} \keyword{nonparametric}