\name{BJnoint} \alias{BJnoint} \title{The Buckley-James censored regression estimator} \usage{ BJnoint(x, y, delta, beta0 = NA, maxiter=30, error = 0.00001) } \arguments{ \item{x}{a matrix or vector containing the covariate, one row per observation.} \item{y}{a numeric vector of length N, censored responses. } \item{delta}{a vector of length N, delta=0/1 for censored/uncensored.} \item{beta0}{an optional vector for starting value of iteration.} \item{maxiter}{an optional integer to control iterations.} \item{error}{an optional positive value to control interations.} } \description{ Compute the Buckley-James estimator in the regression model \deqn{ y_i = \beta x_i + \epsilon_i } with right censored \eqn{y_i}. } \details{ This function can be used to compute the Buckley-James estimator when your model do not have an intercept term. Of course, if you include a column of 1's in the x matrix, it is also OK with this function and it is equivalent to having an intercept term. If your model do have an intercept term, then you should use the function \code{bj( )} in the \code{Design} library. It should be more refined than \code{BJnoint}. This function is included here mainly to produce the estimator value that may provide some useful information with the function \code{bjtest( )}. For example you may want to test the beta value close to the Buckley-James estimator. } \value{ A list with the following components: \item{beta}{the Buckley-James estimator.} \item{iteration}{number of iterations performed.} } \references{ Buckley, J. and James, I. (1979). Linear regression with censored data. \emph{Biometrika}, \bold{66} 429-36. } \author{ Mai Zhou. } \examples{ x <- matrix(c(rnorm(50,mean=1), rnorm(50,mean=2)), ncol=2,nrow=50) ## Suppose now we wish to test Ho: 2mu(1)-mu(2)=0, then y <- 2*x[,1]-x[,2] xx <- c(28,-44,29,30,26,27,22,23,33,16,24,29,24,40,21,31,34,-2,25,19) } \keyword{nonparametric} \keyword{htest}