/* -*- Mode: C++; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 4 -*- * vim: set ts=8 sts=4 et sw=4 tw=99: * This Source Code Form is subject to the terms of the Mozilla Public * License, v. 2.0. If a copy of the MPL was not distributed with this * file, You can obtain one at http://mozilla.org/MPL/2.0/. */ /* * JS math package. */ #include "jsmath.h" #include "mozilla/Constants.h" #include "mozilla/FloatingPoint.h" #include "mozilla/MathAlgorithms.h" #include "mozilla/MemoryReporting.h" #include // for std::max #include #ifdef XP_UNIX # include #endif #include "jsapi.h" #include "jsatom.h" #include "jscntxt.h" #include "jscompartment.h" #include "jslibmath.h" #include "jstypes.h" #include "prmjtime.h" #include "jsobjinlines.h" using namespace js; using mozilla::Abs; using mozilla::NumberEqualsInt32; using mozilla::NumberIsInt32; using mozilla::ExponentComponent; using mozilla::FloatingPoint; using mozilla::IsFinite; using mozilla::IsInfinite; using mozilla::IsNaN; using mozilla::IsNegative; using mozilla::IsNegativeZero; using mozilla::PositiveInfinity; using mozilla::NegativeInfinity; using JS::ToNumber; using JS::GenericNaN; static const JSConstDoubleSpec math_constants[] = { {M_E, "E", 0, {0,0,0}}, {M_LOG2E, "LOG2E", 0, {0,0,0}}, {M_LOG10E, "LOG10E", 0, {0,0,0}}, {M_LN2, "LN2", 0, {0,0,0}}, {M_LN10, "LN10", 0, {0,0,0}}, {M_PI, "PI", 0, {0,0,0}}, {M_SQRT2, "SQRT2", 0, {0,0,0}}, {M_SQRT1_2, "SQRT1_2", 0, {0,0,0}}, {0,0,0,{0,0,0}} }; MathCache::MathCache() { memset(table, 0, sizeof(table)); /* See comments in lookup(). */ JS_ASSERT(IsNegativeZero(-0.0)); JS_ASSERT(!IsNegativeZero(+0.0)); JS_ASSERT(hash(-0.0, MathCache::Sin) != hash(+0.0, MathCache::Sin)); } size_t MathCache::sizeOfIncludingThis(mozilla::MallocSizeOf mallocSizeOf) { return mallocSizeOf(this); } const Class js::MathClass = { js_Math_str, JSCLASS_HAS_CACHED_PROTO(JSProto_Math), JS_PropertyStub, /* addProperty */ JS_DeletePropertyStub, /* delProperty */ JS_PropertyStub, /* getProperty */ JS_StrictPropertyStub, /* setProperty */ JS_EnumerateStub, JS_ResolveStub, JS_ConvertStub }; bool js_math_abs(JSContext *cx, unsigned argc, Value *vp) { CallArgs args = CallArgsFromVp(argc, vp); if (args.length() == 0) { args.rval().setNaN(); return true; } double x; if (!ToNumber(cx, args[0], &x)) return false; double z = Abs(x); args.rval().setNumber(z); return true; } #if defined(SOLARIS) && defined(__GNUC__) #define ACOS_IF_OUT_OF_RANGE(x) if (x < -1 || 1 < x) return GenericNaN(); #else #define ACOS_IF_OUT_OF_RANGE(x) #endif double js::math_acos_impl(MathCache *cache, double x) { ACOS_IF_OUT_OF_RANGE(x); return cache->lookup(acos, x, MathCache::Acos); } double js::math_acos_uncached(double x) { ACOS_IF_OUT_OF_RANGE(x); return acos(x); } #undef ACOS_IF_OUT_OF_RANGE bool js::math_acos(JSContext *cx, unsigned argc, Value *vp) { CallArgs args = CallArgsFromVp(argc, vp); if (args.length() == 0) { args.rval().setNaN(); return true; } double x; if (!ToNumber(cx, args[0], &x)) return false; MathCache *mathCache = cx->runtime()->getMathCache(cx); if (!mathCache) return false; double z = math_acos_impl(mathCache, x); args.rval().setDouble(z); return true; } #if defined(SOLARIS) && defined(__GNUC__) #define ASIN_IF_OUT_OF_RANGE(x) if (x < -1 || 1 < x) return GenericNaN(); #else #define ASIN_IF_OUT_OF_RANGE(x) #endif double js::math_asin_impl(MathCache *cache, double x) { ASIN_IF_OUT_OF_RANGE(x); return cache->lookup(asin, x, MathCache::Asin); } double js::math_asin_uncached(double x) { ASIN_IF_OUT_OF_RANGE(x); return asin(x); } #undef ASIN_IF_OUT_OF_RANGE bool js::math_asin(JSContext *cx, unsigned argc, Value *vp) { CallArgs args = CallArgsFromVp(argc, vp); if (args.length() == 0) { args.rval().setNaN(); return true; } double x; if (!ToNumber(cx, args[0], &x)) return false; MathCache *mathCache = cx->runtime()->getMathCache(cx); if (!mathCache) return false; double z = math_asin_impl(mathCache, x); args.rval().setDouble(z); return true; } double js::math_atan_impl(MathCache *cache, double x) { return cache->lookup(atan, x, MathCache::Atan); } double js::math_atan_uncached(double x) { return atan(x); } bool js::math_atan(JSContext *cx, unsigned argc, Value *vp) { CallArgs args = CallArgsFromVp(argc, vp); if (args.length() == 0) { args.rval().setNaN(); return true; } double x; if (!ToNumber(cx, args[0], &x)) return false; MathCache *mathCache = cx->runtime()->getMathCache(cx); if (!mathCache) return false; double z = math_atan_impl(mathCache, x); args.rval().setDouble(z); return true; } double js::ecmaAtan2(double y, double x) { #if defined(_MSC_VER) /* * MSVC's atan2 does not yield the result demanded by ECMA when both x * and y are infinite. * - The result is a multiple of pi/4. * - The sign of y determines the sign of the result. * - The sign of x determines the multiplicator, 1 or 3. */ if (IsInfinite(y) && IsInfinite(x)) { double z = js_copysign(M_PI / 4, y); if (x < 0) z *= 3; return z; } #endif #if defined(SOLARIS) && defined(__GNUC__) if (y == 0) { if (IsNegativeZero(x)) return js_copysign(M_PI, y); if (x == 0) return y; } #endif return atan2(y, x); } bool js::math_atan2(JSContext *cx, unsigned argc, Value *vp) { CallArgs args = CallArgsFromVp(argc, vp); double y; if (!ToNumber(cx, args.get(0), &y)) return false; double x; if (!ToNumber(cx, args.get(1), &x)) return false; double z = ecmaAtan2(y, x); args.rval().setDouble(z); return true; } double js::math_ceil_impl(double x) { #ifdef __APPLE__ if (x < 0 && x > -1.0) return js_copysign(0, -1); #endif return ceil(x); } bool js::math_ceil(JSContext *cx, unsigned argc, Value *vp) { CallArgs args = CallArgsFromVp(argc, vp); if (args.length() == 0) { args.rval().setNaN(); return true; } double x; if (!ToNumber(cx, args[0], &x)) return false; double z = math_ceil_impl(x); args.rval().setNumber(z); return true; } bool js::math_clz32(JSContext *cx, unsigned argc, Value *vp) { CallArgs args = CallArgsFromVp(argc, vp); if (args.length() == 0) { args.rval().setInt32(32); return true; } uint32_t n; if (!ToUint32(cx, args[0], &n)) return false; if (n == 0) { args.rval().setInt32(32); return true; } args.rval().setInt32(mozilla::CountLeadingZeroes32(n)); return true; } double js::math_cos_impl(MathCache *cache, double x) { return cache->lookup(cos, x, MathCache::Cos); } double js::math_cos_uncached(double x) { return cos(x); } bool js::math_cos(JSContext *cx, unsigned argc, Value *vp) { CallArgs args = CallArgsFromVp(argc, vp); if (args.length() == 0) { args.rval().setNaN(); return true; } double x; if (!ToNumber(cx, args[0], &x)) return false; MathCache *mathCache = cx->runtime()->getMathCache(cx); if (!mathCache) return false; double z = math_cos_impl(mathCache, x); args.rval().setDouble(z); return true; } #ifdef _WIN32 #define EXP_IF_OUT_OF_RANGE(x) \ if (!IsNaN(x)) { \ if (x == PositiveInfinity()) \ return PositiveInfinity(); \ if (x == NegativeInfinity()) \ return 0.0; \ } #else #define EXP_IF_OUT_OF_RANGE(x) #endif double js::math_exp_impl(MathCache *cache, double x) { EXP_IF_OUT_OF_RANGE(x); return cache->lookup(exp, x, MathCache::Exp); } double js::math_exp_uncached(double x) { EXP_IF_OUT_OF_RANGE(x); return exp(x); } #undef EXP_IF_OUT_OF_RANGE bool js::math_exp(JSContext *cx, unsigned argc, Value *vp) { CallArgs args = CallArgsFromVp(argc, vp); if (args.length() == 0) { args.rval().setNaN(); return true; } double x; if (!ToNumber(cx, args[0], &x)) return false; MathCache *mathCache = cx->runtime()->getMathCache(cx); if (!mathCache) return false; double z = math_exp_impl(mathCache, x); args.rval().setNumber(z); return true; } double js::math_floor_impl(double x) { return floor(x); } bool js::math_floor(JSContext *cx, unsigned argc, Value *vp) { CallArgs args = CallArgsFromVp(argc, vp); if (args.length() == 0) { args.rval().setNaN(); return true; } double x; if (!ToNumber(cx, args[0], &x)) return false; double z = math_floor_impl(x); args.rval().setNumber(z); return true; } bool js::math_imul(JSContext *cx, unsigned argc, Value *vp) { CallArgs args = CallArgsFromVp(argc, vp); uint32_t a = 0, b = 0; if (args.hasDefined(0) && !ToUint32(cx, args[0], &a)) return false; if (args.hasDefined(1) && !ToUint32(cx, args[1], &b)) return false; uint32_t product = a * b; args.rval().setInt32(product > INT32_MAX ? int32_t(INT32_MIN + (product - INT32_MAX - 1)) : int32_t(product)); return true; } // Implements Math.fround (20.2.2.16) up to step 3 bool js::RoundFloat32(JSContext *cx, HandleValue v, float *out) { double d; bool success = ToNumber(cx, v, &d); *out = static_cast(d); return success; } bool js::RoundFloat32(JSContext *cx, HandleValue arg, MutableHandleValue res) { float f; if (!RoundFloat32(cx, arg, &f)) return false; res.setDouble(static_cast(f)); return true; } bool js::math_fround(JSContext *cx, unsigned argc, Value *vp) { CallArgs args = CallArgsFromVp(argc, vp); if (args.length() == 0) { args.rval().setNaN(); return true; } float f; if (!RoundFloat32(cx, args[0], &f)) return false; args.rval().setDouble(static_cast(f)); return true; } #if defined(SOLARIS) && defined(__GNUC__) #define LOG_IF_OUT_OF_RANGE(x) if (x < 0) return GenericNaN(); #else #define LOG_IF_OUT_OF_RANGE(x) #endif double js::math_log_impl(MathCache *cache, double x) { LOG_IF_OUT_OF_RANGE(x); return cache->lookup(log, x, MathCache::Log); } double js::math_log_uncached(double x) { LOG_IF_OUT_OF_RANGE(x); return log(x); } #undef LOG_IF_OUT_OF_RANGE bool js::math_log(JSContext *cx, unsigned argc, Value *vp) { CallArgs args = CallArgsFromVp(argc, vp); if (args.length() == 0) { args.rval().setNaN(); return true; } double x; if (!ToNumber(cx, args[0], &x)) return false; MathCache *mathCache = cx->runtime()->getMathCache(cx); if (!mathCache) return false; double z = math_log_impl(mathCache, x); args.rval().setNumber(z); return true; } bool js_math_max(JSContext *cx, unsigned argc, Value *vp) { CallArgs args = CallArgsFromVp(argc, vp); double maxval = NegativeInfinity(); for (unsigned i = 0; i < args.length(); i++) { double x; if (!ToNumber(cx, args[i], &x)) return false; // Math.max(num, NaN) => NaN, Math.max(-0, +0) => +0 if (x > maxval || IsNaN(x) || (x == maxval && IsNegative(maxval))) maxval = x; } args.rval().setNumber(maxval); return true; } bool js_math_min(JSContext *cx, unsigned argc, Value *vp) { CallArgs args = CallArgsFromVp(argc, vp); double minval = PositiveInfinity(); for (unsigned i = 0; i < args.length(); i++) { double x; if (!ToNumber(cx, args[i], &x)) return false; // Math.min(num, NaN) => NaN, Math.min(-0, +0) => -0 if (x < minval || IsNaN(x) || (x == minval && IsNegativeZero(x))) minval = x; } args.rval().setNumber(minval); return true; } // Disable PGO for Math.pow() and related functions (see bug 791214). #if defined(_MSC_VER) # pragma optimize("g", off) #endif double js::powi(double x, int y) { unsigned n = (y < 0) ? -y : y; double m = x; double p = 1; while (true) { if ((n & 1) != 0) p *= m; n >>= 1; if (n == 0) { if (y < 0) { // Unfortunately, we have to be careful when p has reached // infinity in the computation, because sometimes the higher // internal precision in the pow() implementation would have // given us a finite p. This happens very rarely. double result = 1.0 / p; return (result == 0 && IsInfinite(p)) ? pow(x, static_cast(y)) // Avoid pow(double, int). : result; } return p; } m *= m; } } #if defined(_MSC_VER) # pragma optimize("", on) #endif // Disable PGO for Math.pow() and related functions (see bug 791214). #if defined(_MSC_VER) # pragma optimize("g", off) #endif double js::ecmaPow(double x, double y) { /* * Use powi if the exponent is an integer-valued double. We don't have to * check for NaN since a comparison with NaN is always false. */ int32_t yi; if (NumberEqualsInt32(y, &yi)) return powi(x, yi); /* * Because C99 and ECMA specify different behavior for pow(), * we need to wrap the libm call to make it ECMA compliant. */ if (!IsFinite(y) && (x == 1.0 || x == -1.0)) return GenericNaN(); /* pow(x, +-0) is always 1, even for x = NaN (MSVC gets this wrong). */ if (y == 0) return 1; /* * Special case for square roots. Note that pow(x, 0.5) != sqrt(x) * when x = -0.0, so we have to guard for this. */ if (IsFinite(x) && x != 0.0) { if (y == 0.5) return sqrt(x); if (y == -0.5) return 1.0 / sqrt(x); } return pow(x, y); } #if defined(_MSC_VER) # pragma optimize("", on) #endif // Disable PGO for Math.pow() and related functions (see bug 791214). #if defined(_MSC_VER) # pragma optimize("g", off) #endif bool js_math_pow(JSContext *cx, unsigned argc, Value *vp) { CallArgs args = CallArgsFromVp(argc, vp); double x; if (!ToNumber(cx, args.get(0), &x)) return false; double y; if (!ToNumber(cx, args.get(1), &y)) return false; double z = ecmaPow(x, y); args.rval().setNumber(z); return true; } #if defined(_MSC_VER) # pragma optimize("", on) #endif static uint64_t random_generateSeed() { union { uint8_t u8[8]; uint32_t u32[2]; uint64_t u64; } seed; seed.u64 = 0; #if defined(XP_WIN) /* * Our PRNG only uses 48 bits, so calling rand_s() twice to get 64 bits is * probably overkill. */ rand_s(&seed.u32[0]); #elif defined(XP_UNIX) /* * In the unlikely event we can't read /dev/urandom, there's not much we can * do, so just mix in the fd error code and the current time. */ int fd = open("/dev/urandom", O_RDONLY); MOZ_ASSERT(fd >= 0, "Can't open /dev/urandom"); if (fd >= 0) { read(fd, seed.u8, mozilla::ArrayLength(seed.u8)); close(fd); } seed.u32[0] ^= fd; #else # error "Platform needs to implement random_generateSeed()" #endif seed.u32[1] ^= PRMJ_Now(); return seed.u64; } static const uint64_t RNG_MULTIPLIER = 0x5DEECE66DLL; static const uint64_t RNG_ADDEND = 0xBLL; static const uint64_t RNG_MASK = (1LL << 48) - 1; static const double RNG_DSCALE = double(1LL << 53); /* * Math.random() support, lifted from java.util.Random.java. */ static void random_initState(uint64_t *rngState) { /* Our PRNG only uses 48 bits, so squeeze our entropy into those bits. */ uint64_t seed = random_generateSeed(); seed ^= (seed >> 16); *rngState = (seed ^ RNG_MULTIPLIER) & RNG_MASK; } uint64_t random_next(uint64_t *rngState, int bits) { MOZ_ASSERT((*rngState & 0xffff000000000000ULL) == 0, "Bad rngState"); MOZ_ASSERT(bits > 0 && bits <= 48, "bits is out of range"); if (*rngState == 0) { random_initState(rngState); } uint64_t nextstate = *rngState * RNG_MULTIPLIER; nextstate += RNG_ADDEND; nextstate &= RNG_MASK; *rngState = nextstate; return nextstate >> (48 - bits); } static inline double random_nextDouble(JSContext *cx) { uint64_t *rng = &cx->compartment()->rngState; return double((random_next(rng, 26) << 27) + random_next(rng, 27)) / RNG_DSCALE; } double math_random_no_outparam(JSContext *cx) { /* Calculate random without memory traffic, for use in the JITs. */ return random_nextDouble(cx); } bool js_math_random(JSContext *cx, unsigned argc, Value *vp) { CallArgs args = CallArgsFromVp(argc, vp); double z = random_nextDouble(cx); args.rval().setDouble(z); return true; } double js::math_round_impl(double x) { int32_t ignored; if (NumberIsInt32(x, &ignored)) return x; /* Some numbers are so big that adding 0.5 would give the wrong number. */ if (ExponentComponent(x) >= int_fast16_t(FloatingPoint::ExponentShift)) return x; return js_copysign(floor(x + 0.5), x); } float js::math_roundf_impl(float x) { int32_t ignored; if (NumberIsInt32(x, &ignored)) return x; /* Some numbers are so big that adding 0.5 would give the wrong number. */ if (ExponentComponent(x) >= int_fast16_t(FloatingPoint::ExponentShift)) return x; return js_copysign(floorf(x + 0.5f), x); } bool /* ES5 15.8.2.15. */ js::math_round(JSContext *cx, unsigned argc, Value *vp) { CallArgs args = CallArgsFromVp(argc, vp); if (args.length() == 0) { args.rval().setNaN(); return true; } double x; if (!ToNumber(cx, args[0], &x)) return false; double z = math_round_impl(x); args.rval().setNumber(z); return true; } double js::math_sin_impl(MathCache *cache, double x) { return cache->lookup(sin, x, MathCache::Sin); } double js::math_sin_uncached(double x) { return sin(x); } bool js::math_sin(JSContext *cx, unsigned argc, Value *vp) { CallArgs args = CallArgsFromVp(argc, vp); if (args.length() == 0) { args.rval().setNaN(); return true; } double x; if (!ToNumber(cx, args[0], &x)) return false; MathCache *mathCache = cx->runtime()->getMathCache(cx); if (!mathCache) return false; double z = math_sin_impl(mathCache, x); args.rval().setDouble(z); return true; } bool js_math_sqrt(JSContext *cx, unsigned argc, Value *vp) { CallArgs args = CallArgsFromVp(argc, vp); if (args.length() == 0) { args.rval().setNaN(); return true; } double x; if (!ToNumber(cx, args[0], &x)) return false; MathCache *mathCache = cx->runtime()->getMathCache(cx); if (!mathCache) return false; double z = mathCache->lookup(sqrt, x, MathCache::Sqrt); args.rval().setDouble(z); return true; } double js::math_tan_impl(MathCache *cache, double x) { return cache->lookup(tan, x, MathCache::Tan); } double js::math_tan_uncached(double x) { return tan(x); } bool js::math_tan(JSContext *cx, unsigned argc, Value *vp) { CallArgs args = CallArgsFromVp(argc, vp); if (args.length() == 0) { args.rval().setNaN(); return true; } double x; if (!ToNumber(cx, args[0], &x)) return false; MathCache *mathCache = cx->runtime()->getMathCache(cx); if (!mathCache) return false; double z = math_tan_impl(mathCache, x); args.rval().setDouble(z); return true; } typedef double (*UnaryMathFunctionType)(MathCache *cache, double); template static bool math_function(JSContext *cx, unsigned argc, Value *vp) { CallArgs args = CallArgsFromVp(argc, vp); if (args.length() == 0) { args.rval().setNumber(GenericNaN()); return true; } double x; if (!ToNumber(cx, args[0], &x)) return false; MathCache *mathCache = cx->runtime()->getMathCache(cx); if (!mathCache) return false; double z = F(mathCache, x); args.rval().setNumber(z); return true; } double js::math_log10_impl(MathCache *cache, double x) { return cache->lookup(log10, x, MathCache::Log10); } double js::math_log10_uncached(double x) { return log10(x); } bool js::math_log10(JSContext *cx, unsigned argc, Value *vp) { return math_function(cx, argc, vp); } #if !HAVE_LOG2 double log2(double x) { return log(x) / M_LN2; } #endif double js::math_log2_impl(MathCache *cache, double x) { return cache->lookup(log2, x, MathCache::Log2); } double js::math_log2_uncached(double x) { return log2(x); } bool js::math_log2(JSContext *cx, unsigned argc, Value *vp) { return math_function(cx, argc, vp); } #if !HAVE_LOG1P double log1p(double x) { if (fabs(x) < 1e-4) { /* * Use Taylor approx. log(1 + x) = x - x^2 / 2 + x^3 / 3 - x^4 / 4 with error x^5 / 5 * Since |x| < 10^-4, |x|^5 < 10^-20, relative error less than 10^-16 */ double z = -(x * x * x * x) / 4 + (x * x * x) / 3 - (x * x) / 2 + x; return z; } else { /* For other large enough values of x use direct computation */ return log(1.0 + x); } } #endif #ifdef __APPLE__ // Ensure that log1p(-0) is -0. #define LOG1P_IF_OUT_OF_RANGE(x) if (x == 0) return x; #else #define LOG1P_IF_OUT_OF_RANGE(x) #endif double js::math_log1p_impl(MathCache *cache, double x) { LOG1P_IF_OUT_OF_RANGE(x); return cache->lookup(log1p, x, MathCache::Log1p); } double js::math_log1p_uncached(double x) { LOG1P_IF_OUT_OF_RANGE(x); return log1p(x); } #undef LOG1P_IF_OUT_OF_RANGE bool js::math_log1p(JSContext *cx, unsigned argc, Value *vp) { return math_function(cx, argc, vp); } #if !HAVE_EXPM1 double expm1(double x) { /* Special handling for -0 */ if (x == 0.0) return x; if (fabs(x) < 1e-5) { /* * Use Taylor approx. exp(x) - 1 = x + x^2 / 2 + x^3 / 6 with error x^4 / 24 * Since |x| < 10^-5, |x|^4 < 10^-20, relative error less than 10^-15 */ double z = (x * x * x) / 6 + (x * x) / 2 + x; return z; } else { /* For other large enough values of x use direct computation */ return exp(x) - 1.0; } } #endif double js::math_expm1_impl(MathCache *cache, double x) { return cache->lookup(expm1, x, MathCache::Expm1); } double js::math_expm1_uncached(double x) { return expm1(x); } bool js::math_expm1(JSContext *cx, unsigned argc, Value *vp) { return math_function(cx, argc, vp); } #if !HAVE_SQRT1PM1 /* This algorithm computes sqrt(1+x)-1 for small x */ double sqrt1pm1(double x) { if (fabs(x) > 0.75) return sqrt(1 + x) - 1; return expm1(log1p(x) / 2); } #endif double js::math_cosh_impl(MathCache *cache, double x) { return cache->lookup(cosh, x, MathCache::Cosh); } double js::math_cosh_uncached(double x) { return cosh(x); } bool js::math_cosh(JSContext *cx, unsigned argc, Value *vp) { return math_function(cx, argc, vp); } double js::math_sinh_impl(MathCache *cache, double x) { return cache->lookup(sinh, x, MathCache::Sinh); } double js::math_sinh_uncached(double x) { return sinh(x); } bool js::math_sinh(JSContext *cx, unsigned argc, Value *vp) { return math_function(cx, argc, vp); } double js::math_tanh_impl(MathCache *cache, double x) { return cache->lookup(tanh, x, MathCache::Tanh); } double js::math_tanh_uncached(double x) { return tanh(x); } bool js::math_tanh(JSContext *cx, unsigned argc, Value *vp) { return math_function(cx, argc, vp); } #if !HAVE_ACOSH double acosh(double x) { const double SQUARE_ROOT_EPSILON = sqrt(std::numeric_limits::epsilon()); if ((x - 1) >= SQUARE_ROOT_EPSILON) { if (x > 1 / SQUARE_ROOT_EPSILON) { /* * http://functions.wolfram.com/ElementaryFunctions/ArcCosh/06/01/06/01/0001/ * approximation by laurent series in 1/x at 0+ order from -1 to 0 */ return log(x) + M_LN2; } else if (x < 1.5) { // This is just a rearrangement of the standard form below // devised to minimize loss of precision when x ~ 1: double y = x - 1; return log1p(y + sqrt(y * y + 2 * y)); } else { // http://functions.wolfram.com/ElementaryFunctions/ArcCosh/02/ return log(x + sqrt(x * x - 1)); } } else { // see http://functions.wolfram.com/ElementaryFunctions/ArcCosh/06/01/04/01/0001/ double y = x - 1; // approximation by taylor series in y at 0 up to order 2. // If x is less than 1, sqrt(2 * y) is NaN and the result is NaN. return sqrt(2 * y) * (1 - y / 12 + 3 * y * y / 160); } } #endif double js::math_acosh_impl(MathCache *cache, double x) { return cache->lookup(acosh, x, MathCache::Acosh); } double js::math_acosh_uncached(double x) { return acosh(x); } bool js::math_acosh(JSContext *cx, unsigned argc, Value *vp) { return math_function(cx, argc, vp); } #if !HAVE_ASINH // Bug 899712 - gcc incorrectly rewrites -asinh(-x) to asinh(x) when overriding // asinh. static double my_asinh(double x) { const double SQUARE_ROOT_EPSILON = sqrt(std::numeric_limits::epsilon()); const double FOURTH_ROOT_EPSILON = sqrt(SQUARE_ROOT_EPSILON); if (x >= FOURTH_ROOT_EPSILON) { if (x > 1 / SQUARE_ROOT_EPSILON) // http://functions.wolfram.com/ElementaryFunctions/ArcSinh/06/01/06/01/0001/ // approximation by laurent series in 1/x at 0+ order from -1 to 1 return M_LN2 + log(x) + 1 / (4 * x * x); else if (x < 0.5) return log1p(x + sqrt1pm1(x * x)); else return log(x + sqrt(x * x + 1)); } else if (x <= -FOURTH_ROOT_EPSILON) { return -my_asinh(-x); } else { // http://functions.wolfram.com/ElementaryFunctions/ArcSinh/06/01/03/01/0001/ // approximation by taylor series in x at 0 up to order 2 double result = x; if (fabs(x) >= SQUARE_ROOT_EPSILON) { double x3 = x * x * x; // approximation by taylor series in x at 0 up to order 4 result -= x3 / 6; } return result; } } #endif double js::math_asinh_impl(MathCache *cache, double x) { #ifdef HAVE_ASINH return cache->lookup(asinh, x, MathCache::Asinh); #else return cache->lookup(my_asinh, x, MathCache::Asinh); #endif } double js::math_asinh_uncached(double x) { #ifdef HAVE_ASINH return asinh(x); #else return my_asinh(x); #endif } bool js::math_asinh(JSContext *cx, unsigned argc, Value *vp) { return math_function(cx, argc, vp); } #if !HAVE_ATANH double atanh(double x) { const double EPSILON = std::numeric_limits::epsilon(); const double SQUARE_ROOT_EPSILON = sqrt(EPSILON); const double FOURTH_ROOT_EPSILON = sqrt(SQUARE_ROOT_EPSILON); if (fabs(x) >= FOURTH_ROOT_EPSILON) { // http://functions.wolfram.com/ElementaryFunctions/ArcTanh/02/ if (fabs(x) < 0.5) return (log1p(x) - log1p(-x)) / 2; return log((1 + x) / (1 - x)) / 2; } else { // http://functions.wolfram.com/ElementaryFunctions/ArcTanh/06/01/03/01/ // approximation by taylor series in x at 0 up to order 2 double result = x; if (fabs(x) >= SQUARE_ROOT_EPSILON) { double x3 = x * x * x; result += x3 / 3; } return result; } } #endif double js::math_atanh_impl(MathCache *cache, double x) { return cache->lookup(atanh, x, MathCache::Atanh); } double js::math_atanh_uncached(double x) { return atanh(x); } bool js::math_atanh(JSContext *cx, unsigned argc, Value *vp) { return math_function(cx, argc, vp); } /* Consistency wrapper for platform deviations in hypot() */ double js::ecmaHypot(double x, double y) { #ifdef XP_WIN /* * Workaround MS hypot bug, where hypot(Infinity, NaN or Math.MIN_VALUE) * is NaN, not Infinity. */ if (mozilla::IsInfinite(x) || mozilla::IsInfinite(y)) { return mozilla::PositiveInfinity(); } #endif return hypot(x, y); } bool js::math_hypot(JSContext *cx, unsigned argc, Value *vp) { CallArgs args = CallArgsFromVp(argc, vp); // IonMonkey calls the system hypot function directly if two arguments are // given. Do that here as well to get the same results. if (args.length() == 2) { double x, y; if (!ToNumber(cx, args[0], &x)) return false; if (!ToNumber(cx, args[1], &y)) return false; double result = ecmaHypot(x, y); args.rval().setNumber(result); return true; } bool isInfinite = false; bool isNaN = false; double scale = 0; double sumsq = 1; for (unsigned i = 0; i < args.length(); i++) { double x; if (!ToNumber(cx, args[i], &x)) return false; isInfinite |= mozilla::IsInfinite(x); isNaN |= mozilla::IsNaN(x); double xabs = mozilla::Abs(x); if (scale < xabs) { sumsq = 1 + sumsq * (scale / xabs) * (scale / xabs); scale = xabs; } else if (scale != 0) { sumsq += (xabs / scale) * (xabs / scale); } } double result = isInfinite ? PositiveInfinity() : isNaN ? GenericNaN() : scale * sqrt(sumsq); args.rval().setNumber(result); return true; } #if !HAVE_TRUNC double trunc(double x) { return x > 0 ? floor(x) : ceil(x); } #endif double js::math_trunc_impl(MathCache *cache, double x) { return cache->lookup(trunc, x, MathCache::Trunc); } double js::math_trunc_uncached(double x) { return trunc(x); } bool js::math_trunc(JSContext *cx, unsigned argc, Value *vp) { return math_function(cx, argc, vp); } static double sign(double x) { if (mozilla::IsNaN(x)) return GenericNaN(); return x == 0 ? x : x < 0 ? -1 : 1; } double js::math_sign_impl(MathCache *cache, double x) { return cache->lookup(sign, x, MathCache::Sign); } double js::math_sign_uncached(double x) { return sign(x); } bool js::math_sign(JSContext *cx, unsigned argc, Value *vp) { return math_function(cx, argc, vp); } #if !HAVE_CBRT double cbrt(double x) { if (x > 0) { return pow(x, 1.0 / 3.0); } else if (x == 0) { return x; } else { return -pow(-x, 1.0 / 3.0); } } #endif double js::math_cbrt_impl(MathCache *cache, double x) { return cache->lookup(cbrt, x, MathCache::Cbrt); } double js::math_cbrt_uncached(double x) { return cbrt(x); } bool js::math_cbrt(JSContext *cx, unsigned argc, Value *vp) { return math_function(cx, argc, vp); } #if JS_HAS_TOSOURCE static bool math_toSource(JSContext *cx, unsigned argc, Value *vp) { CallArgs args = CallArgsFromVp(argc, vp); args.rval().setString(cx->names().Math); return true; } #endif static const JSFunctionSpec math_static_methods[] = { #if JS_HAS_TOSOURCE JS_FN(js_toSource_str, math_toSource, 0, 0), #endif JS_FN("abs", js_math_abs, 1, 0), JS_FN("acos", math_acos, 1, 0), JS_FN("asin", math_asin, 1, 0), JS_FN("atan", math_atan, 1, 0), JS_FN("atan2", math_atan2, 2, 0), JS_FN("ceil", math_ceil, 1, 0), JS_FN("clz32", math_clz32, 1, 0), JS_FN("cos", math_cos, 1, 0), JS_FN("exp", math_exp, 1, 0), JS_FN("floor", math_floor, 1, 0), JS_FN("imul", math_imul, 2, 0), JS_FN("fround", math_fround, 1, 0), JS_FN("log", math_log, 1, 0), JS_FN("max", js_math_max, 2, 0), JS_FN("min", js_math_min, 2, 0), JS_FN("pow", js_math_pow, 2, 0), JS_FN("random", js_math_random, 0, 0), JS_FN("round", math_round, 1, 0), JS_FN("sin", math_sin, 1, 0), JS_FN("sqrt", js_math_sqrt, 1, 0), JS_FN("tan", math_tan, 1, 0), JS_FN("log10", math_log10, 1, 0), JS_FN("log2", math_log2, 1, 0), JS_FN("log1p", math_log1p, 1, 0), JS_FN("expm1", math_expm1, 1, 0), JS_FN("cosh", math_cosh, 1, 0), JS_FN("sinh", math_sinh, 1, 0), JS_FN("tanh", math_tanh, 1, 0), JS_FN("acosh", math_acosh, 1, 0), JS_FN("asinh", math_asinh, 1, 0), JS_FN("atanh", math_atanh, 1, 0), JS_FN("hypot", math_hypot, 2, 0), JS_FN("trunc", math_trunc, 1, 0), JS_FN("sign", math_sign, 1, 0), JS_FN("cbrt", math_cbrt, 1, 0), JS_FS_END }; JSObject * js_InitMathClass(JSContext *cx, HandleObject obj) { RootedObject proto(cx, obj->as().getOrCreateObjectPrototype(cx)); if (!proto) return nullptr; RootedObject Math(cx, NewObjectWithGivenProto(cx, &MathClass, proto, obj, SingletonObject)); if (!Math) return nullptr; if (!JS_DefineProperty(cx, obj, js_Math_str, Math, 0, JS_PropertyStub, JS_StrictPropertyStub)) { return nullptr; } if (!JS_DefineFunctions(cx, Math, math_static_methods)) return nullptr; if (!JS_DefineConstDoubles(cx, Math, math_constants)) return nullptr; obj->as().setConstructor(JSProto_Math, ObjectValue(*Math)); return Math; }