#' (M)HC (A)llele-Based (D)ifferencing between (Pop)ulations #' #' Tools for the analysis of population differences using the Major Histocompatibility Complex (MHC) genotypes of samples having a variable number of alleles (1-4) recorded for each individual. #' @details For a full tutorial see package vignette: \code{vignette("MADPop-quicktut")}. #' @docType package #' @name MADPop #' @useDynLib MADPop, .registration = TRUE #' @import Rcpp #' @import methods #' @importFrom rstan extract sampling #' @examples #' # typical dataset #' head(fish215[sample(nrow(fish215)),]) #' table(fish215$Lake) # number of samples per lake #' #' # contingency table on two lakes #' iLakes <- c("Michipicoten", "Simcoe") #' Xsuff <- UM.suff(X = fish215[fish215$Lake %in% iLakes,]) #' ctab <- Xsuff$tab #' ctab #' #' # bootstrapped p-value calculation for chi^2 and LR tests #' p.MLE <- colSums(ctab)/sum(ctab) #' N1 <- sum(ctab[1,]) #' N2 <- sum(ctab[2,]) #' # bootstrapped test statistics (chi^2 and LRT) #' T.boot <- UM.eqtest(N1 = N1, N2 = N2, p0 = p.MLE, nreps = 1e3) #' #' # observed test statistics #' T.obs <- c(chi2 = chi2.stat(ctab), LRT = LRT.stat(ctab)) #' # p-values #' rowMeans(t(T.boot) > T.obs) #' #' # posterior sampler for hierarchical model #' #' # output posterior probability for each genotype in lake Simcoe #' rhoId <- "Simcoe" #' nsamples <- 500 #' hUM.fit <- hUM.post(nsamples = nsamples, X = fish215, #' rhoId = rhoId, chains = 1) #' #' # first 20 genotype posterior probabilities in lake Simcoe #' rho.post <- hUM.fit$rho[,1,] #' boxplot(rho.post[,1:20], las = 2, #' xlab = "Genotype", ylab = "Posterior Probability", #' pch = ".", col = "grey") NULL