Skip to main content
  • Home
  • Development
  • Documentation
  • Donate
  • Operational login
  • Browse the archive

swh logo
SoftwareHeritage
Software
Heritage
Archive
Features
  • Search

  • Downloads

  • Save code now

  • Add forge now

  • Help

  • 304e323
  • /
  • tensor_decomposition.rst
Raw File Download
Permalinks

To reference or cite the objects present in the Software Heritage archive, permalinks based on SoftWare Hash IDentifiers (SWHIDs) must be used.
Select below a type of object currently browsed in order to display its associated SWHID and permalink.

  • content
  • directory
content badge Iframe embedding
swh:1:cnt:aee5388de8c8d034544cca9b0a958d283fa72463
directory badge Iframe embedding
swh:1:dir:304e323b0eff854d09db037388ad409e08df7830
Citations

This interface enables to generate software citations, provided that the root directory of browsed objects contains a citation.cff or codemeta.json file.
Select below a type of object currently browsed in order to generate citations for them.

  • content
  • directory
Generate software citation in BibTex format (requires biblatex-software package)
Generating citation ...
Generate software citation in BibTex format (requires biblatex-software package)
Generating citation ...
tensor_decomposition.rst
Tensor decomposition
====================

In this tutorial we will go over how to perform tensor decomposition.
Refer to [1]_ for more information on tensor decomposition.

CANDECOMP-PARAFAC
-----------------
We demonstrate here how to perform a Canonical Polyadic Decomposition (also known as CANDECOMP-PARAFAC, CP, or PARAFAC decomposition). A rank-r Parafac decomposes a tensor into a linear combination of r rank-1 tensors (See [1]_ for more details).

First, let's create a second order tensor that is zero everywhere except in a swiss shape that is one.

.. code-block::python
   >>> import numpy as np
   >>> import tensorly as tl
   >>> tensor = np.array([[ 0.,  0.,  0.,  0.,  0.,  0.,  0.,  0.,  0.,  0.,  0.,  0.],
                          [ 0.,  0.,  0.,  0.,  1.,  1.,  1.,  1.,  0.,  0.,  0.,  0.],
                          [ 0.,  0.,  0.,  0.,  1.,  1.,  1.,  1.,  0.,  0.,  0.,  0.],
                          [ 0.,  0.,  0.,  0.,  1.,  1.,  1.,  1.,  0.,  0.,  0.,  0.],
                          [ 0.,  1.,  1.,  1.,  1.,  1.,  1.,  1.,  1.,  1.,  1.,  0.],
                          [ 0.,  1.,  1.,  1.,  1.,  1.,  1.,  1.,  1.,  1.,  1.,  0.],
                          [ 0.,  1.,  1.,  1.,  1.,  1.,  1.,  1.,  1.,  1.,  1.,  0.],
                          [ 0.,  1.,  1.,  1.,  1.,  1.,  1.,  1.,  1.,  1.,  1.,  0.],
                          [ 0.,  0.,  0.,  0.,  1.,  1.,  1.,  1.,  0.,  0.,  0.,  0.],
                          [ 0.,  0.,  0.,  0.,  1.,  1.,  1.,  1.,  0.,  0.,  0.,  0.],
                          [ 0.,  0.,  0.,  0.,  1.,  1.,  1.,  1.,  0.,  0.,  0.,  0.],
                          [ 0.,  0.,  0.,  0.,  0.,  0.,  0.,  0.,  0.,  0.,  0.,  0.]])


We will now apply a rank-2 CANDECOMP-PARAFAC (:func:`tensorly.decomposition.parafac`) decomposition on `tensor`
to decompose this into a kruskal tensor.

A Parafac decompositions expresses the tensor as a kruskal tensor that can be represented as a list of factors (matrices).
The :func:`parafac` function therefore returns a list of factors.

.. code::

   >>> from tensorly.decomposition import parafac
   >>> factors = parafac(tensor, rank=2)
   >>> len(factors)
   2
   >>> [f.shape for f in factors]
   [(12, 2), (12, 2)]

From this **kruskal tensor** (presented as a list of matrices) you can reconstruct a full tensor:

.. code::

   >>> print(tl.kruskal_to_tensor(factors))
   [[ 0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.]
    [ 0.  0.  0.  0.  1.  1.  1.  1.  0.  0.  0.  0.]
    [ 0.  0.  0.  0.  1.  1.  1.  1.  0.  0.  0.  0.]
    [ 0.  0.  0.  0.  1.  1.  1.  1.  0.  0.  0.  0.]
    [ 0.  1.  1.  1.  1.  1.  1.  1.  1.  1.  1.  0.]
    [ 0.  1.  1.  1.  1.  1.  1.  1.  1.  1.  1.  0.]
    [ 0.  1.  1.  1.  1.  1.  1.  1.  1.  1.  1.  0.]
    [ 0.  1.  1.  1.  1.  1.  1.  1.  1.  1.  1.  0.]
    [ 0.  0.  0.  0.  1.  1.  1.  1.  0.  0.  0.  0.]
    [ 0.  0.  0.  0.  1.  1.  1.  1.  0.  0.  0.  0.]
    [ 0.  0.  0.  0.  1.  1.  1.  1.  0.  0.  0.  0.]
    [ 0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.]]


Tucker
------
The Tucker decomposition can be seen as a generalisation of the CP decomposition: it decomposes the tensor into a small core tensor and factor matrices. CP can be seen as a Tucker decomposition with a super-diagonal core.

Tucker (classical and non-negative) are available in TensorLy (:func:`tensorly.decomposition.tucker` and :func:`tensorly.decomposition.non_negative_tucker`).

Using the same tensor as previously, we will perform a rank [2, 3]-decomposition of `tensor`:

.. code::

   >>> from tensorly.decomposition import tucker
   >>> core, factors = tucker(tensor, ranks=[2, 3])
   # The core is a smaller tensor of size (2, 3):
   >>> core.shape
   (2, 3)
   >>> len(factors)
   2
   >>> [f.shape for f in factors]
   [(12, 2), (12, 3)]

As previously, we can reconstruct a full tensor from our Tucker decomposition:

.. code:: python
   
   >>> from tensorly import tucker_to_tensor
   >>> print(tucker_to_tensor(core, factors)
   [  0.000e+00   0.000e+00   0.000e+00   0.000e+00   0.000e+00   0.000e+00   0.000e+00   0.000e+00   0.000e+00   0.000e+00   0.000e+00   0.000e+00]
    [ -7.340e-17   2.617e-16   1.914e-16   2.475e-16   1.000e+00   1.000e+00   1.000e+00   1.000e+00   2.475e-16   2.475e-16   2.475e-16   0.000e+00]
    [ -7.340e-17   2.617e-16   1.914e-16   2.475e-16   1.000e+00   1.000e+00   1.000e+00   1.000e+00   2.475e-16   2.475e-16   2.475e-16   0.000e+00]
    [ -7.340e-17   2.617e-16   1.914e-16   2.475e-16   1.000e+00   1.000e+00   1.000e+00   1.000e+00   2.475e-16   2.475e-16   2.475e-16   0.000e+00]
    [  7.746e-17   1.000e+00   1.000e+00   1.000e+00   1.000e+00   1.000e+00   1.000e+00   1.000e+00   1.000e+00   1.000e+00   1.000e+00   0.000e+00]
    [  7.746e-17   1.000e+00   1.000e+00   1.000e+00   1.000e+00   1.000e+00   1.000e+00   1.000e+00   1.000e+00   1.000e+00   1.000e+00   0.000e+00]
    [  7.746e-17   1.000e+00   1.000e+00   1.000e+00   1.000e+00   1.000e+00   1.000e+00   1.000e+00   1.000e+00   1.000e+00   1.000e+00   0.000e+00]
    [  7.746e-17   1.000e+00   1.000e+00   1.000e+00   1.000e+00   1.000e+00   1.000e+00   1.000e+00   1.000e+00   1.000e+00   1.000e+00   0.000e+00]
    [ -7.340e-17   2.617e-16   1.914e-16   2.475e-16   1.000e+00   1.000e+00   1.000e+00   1.000e+00   2.475e-16   2.475e-16   2.475e-16   0.000e+00]
    [ -7.340e-17   2.617e-16   1.914e-16   2.475e-16   1.000e+00   1.000e+00   1.000e+00   1.000e+00   2.475e-16   2.475e-16   2.475e-16   0.000e+00]
    [ -7.340e-17   2.617e-16   1.914e-16   2.475e-16   1.000e+00   1.000e+00   1.000e+00   1.000e+00   2.475e-16   2.475e-16   2.475e-16   0.000e+00]
    [  0.000e+00   0.000e+00   0.000e+00   0.000e+00   0.000e+00   0.000e+00   0.000e+00   0.000e+00   0.000e+00   0.000e+00   0.000e+00   0.000e+00]]

Note that some coefficients are almost zero (10e-16) but not exactly due to numerical approximations.

References
----------
.. [1] T.G.Kolda and B.W.Bader, "Tensor Decompositions and Applications",
       SIAM REVIEW, vol. 51, n. 3, pp. 455-500, 2009.

Software Heritage — Copyright (C) 2015–2025, The Software Heritage developers. License: GNU AGPLv3+.
The source code of Software Heritage itself is available on our development forge.
The source code files archived by Software Heritage are available under their own copyright and licenses.
Terms of use: Archive access, API— Contact— JavaScript license information— Web API

back to top