swh:1:snp:4e3e7077647a709f15b8c1b32ce7100175d0580b
Tip revision: 7146ca6de4e9aafb344bfa9a035f5f0b640aabca authored by Jean Kossaifi on 27 February 2017, 14:39:12 UTC
DOC: Minor update
DOC: Minor update
Tip revision: 7146ca6
tensor_decomposition.rst
Tensor decomposition
====================
In this tutorial we will go over how to perform tensor decomposition.
Refer to [1]_ for more information on tensor decomposition.
CANDECOMP-PARAFAC
-----------------
We demonstrate here how to perform a Canonical Polyadic Decomposition (also known as CANDECOMP-PARAFAC, CP, or PARAFAC decomposition). A rank-r Parafac decomposes a tensor into a linear combination of r rank-1 tensors (See [1]_ for more details).
First, let's create a second order tensor that is zero everywhere except in a swiss shape that is one.
.. code-block::python
>>> import numpy as np
>>> import tensorly as tl
>>> tensor = np.array([[ 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.],
[ 0., 0., 0., 0., 1., 1., 1., 1., 0., 0., 0., 0.],
[ 0., 0., 0., 0., 1., 1., 1., 1., 0., 0., 0., 0.],
[ 0., 0., 0., 0., 1., 1., 1., 1., 0., 0., 0., 0.],
[ 0., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 0.],
[ 0., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 0.],
[ 0., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 0.],
[ 0., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 0.],
[ 0., 0., 0., 0., 1., 1., 1., 1., 0., 0., 0., 0.],
[ 0., 0., 0., 0., 1., 1., 1., 1., 0., 0., 0., 0.],
[ 0., 0., 0., 0., 1., 1., 1., 1., 0., 0., 0., 0.],
[ 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.]])
We will now apply a rank-2 CANDECOMP-PARAFAC (:func:`tensorly.decomposition.parafac`) decomposition on `tensor`
to decompose this into a kruskal tensor.
A Parafac decompositions expresses the tensor as a kruskal tensor that can be represented as a list of factors (matrices).
The :func:`parafac` function therefore returns a list of factors.
.. code::
>>> from tensorly.decomposition import parafac
>>> factors = parafac(tensor, rank=2)
>>> len(factors)
2
>>> [f.shape for f in factors]
[(12, 2), (12, 2)]
From this **kruskal tensor** (presented as a list of matrices) you can reconstruct a full tensor:
.. code::
>>> print(tl.kruskal_to_tensor(factors))
[[ 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.]
[ 0. 0. 0. 0. 1. 1. 1. 1. 0. 0. 0. 0.]
[ 0. 0. 0. 0. 1. 1. 1. 1. 0. 0. 0. 0.]
[ 0. 0. 0. 0. 1. 1. 1. 1. 0. 0. 0. 0.]
[ 0. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 0.]
[ 0. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 0.]
[ 0. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 0.]
[ 0. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 0.]
[ 0. 0. 0. 0. 1. 1. 1. 1. 0. 0. 0. 0.]
[ 0. 0. 0. 0. 1. 1. 1. 1. 0. 0. 0. 0.]
[ 0. 0. 0. 0. 1. 1. 1. 1. 0. 0. 0. 0.]
[ 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.]]
Tucker
------
The Tucker decomposition can be seen as a generalisation of the CP decomposition: it decomposes the tensor into a small core tensor and factor matrices. CP can be seen as a Tucker decomposition with a super-diagonal core.
Tucker (classical and non-negative) are available in TensorLy (:func:`tensorly.decomposition.tucker` and :func:`tensorly.decomposition.non_negative_tucker`).
Using the same tensor as previously, we will perform a rank [2, 3]-decomposition of `tensor`:
.. code::
>>> from tensorly.decomposition import tucker
>>> core, factors = tucker(tensor, ranks=[2, 3])
# The core is a smaller tensor of size (2, 3):
>>> core.shape
(2, 3)
>>> len(factors)
2
>>> [f.shape for f in factors]
[(12, 2), (12, 3)]
As previously, we can reconstruct a full tensor from our Tucker decomposition:
.. code:: python
>>> from tensorly import tucker_to_tensor
>>> print(tucker_to_tensor(core, factors)
[ 0.000e+00 0.000e+00 0.000e+00 0.000e+00 0.000e+00 0.000e+00 0.000e+00 0.000e+00 0.000e+00 0.000e+00 0.000e+00 0.000e+00]
[ -7.340e-17 2.617e-16 1.914e-16 2.475e-16 1.000e+00 1.000e+00 1.000e+00 1.000e+00 2.475e-16 2.475e-16 2.475e-16 0.000e+00]
[ -7.340e-17 2.617e-16 1.914e-16 2.475e-16 1.000e+00 1.000e+00 1.000e+00 1.000e+00 2.475e-16 2.475e-16 2.475e-16 0.000e+00]
[ -7.340e-17 2.617e-16 1.914e-16 2.475e-16 1.000e+00 1.000e+00 1.000e+00 1.000e+00 2.475e-16 2.475e-16 2.475e-16 0.000e+00]
[ 7.746e-17 1.000e+00 1.000e+00 1.000e+00 1.000e+00 1.000e+00 1.000e+00 1.000e+00 1.000e+00 1.000e+00 1.000e+00 0.000e+00]
[ 7.746e-17 1.000e+00 1.000e+00 1.000e+00 1.000e+00 1.000e+00 1.000e+00 1.000e+00 1.000e+00 1.000e+00 1.000e+00 0.000e+00]
[ 7.746e-17 1.000e+00 1.000e+00 1.000e+00 1.000e+00 1.000e+00 1.000e+00 1.000e+00 1.000e+00 1.000e+00 1.000e+00 0.000e+00]
[ 7.746e-17 1.000e+00 1.000e+00 1.000e+00 1.000e+00 1.000e+00 1.000e+00 1.000e+00 1.000e+00 1.000e+00 1.000e+00 0.000e+00]
[ -7.340e-17 2.617e-16 1.914e-16 2.475e-16 1.000e+00 1.000e+00 1.000e+00 1.000e+00 2.475e-16 2.475e-16 2.475e-16 0.000e+00]
[ -7.340e-17 2.617e-16 1.914e-16 2.475e-16 1.000e+00 1.000e+00 1.000e+00 1.000e+00 2.475e-16 2.475e-16 2.475e-16 0.000e+00]
[ -7.340e-17 2.617e-16 1.914e-16 2.475e-16 1.000e+00 1.000e+00 1.000e+00 1.000e+00 2.475e-16 2.475e-16 2.475e-16 0.000e+00]
[ 0.000e+00 0.000e+00 0.000e+00 0.000e+00 0.000e+00 0.000e+00 0.000e+00 0.000e+00 0.000e+00 0.000e+00 0.000e+00 0.000e+00]]
Note that some coefficients are almost zero (10e-16) but not exactly due to numerical approximations.
References
----------
.. [1] T.G.Kolda and B.W.Bader, "Tensor Decompositions and Applications",
SIAM REVIEW, vol. 51, n. 3, pp. 455-500, 2009.