Skip to main content
  • Home
  • Development
  • Documentation
  • Donate
  • Operational login
  • Browse the archive

swh logo
SoftwareHeritage
Software
Heritage
Archive
Features
  • Search

  • Downloads

  • Save code now

  • Add forge now

  • Help

Raw File Download
Permalink

To reference or cite the objects present in the Software Heritage archive, permalinks based on SoftWare Hash IDentifiers (SWHIDs) must be used.
Select below a type of object currently browsed in order to display its associated SWHID and permalink.

  • content
content badge Iframe embedding
swh:1:cnt:afd26fff82c8c7af2d0c73db7ebeac46357b62cb
Citations

This interface enables to generate software citations, provided that the root directory of browsed objects contains a citation.cff or codemeta.json file.
Select below a type of object currently browsed in order to generate citations for them.

  • content
Generate software citation in BibTex format (requires biblatex-software package)
Generating citation ...
# -*- coding: utf-8 -*-
"""
Created on Fri Nov  1 17:11:46 2019
@author: Jonathan
"""

import numpy as np
import matplotlib.pyplot as plt
import math
import sys
import os
import pathlib
import pywt
from scipy import optimize

from pylab import rcParams

'''Setting the global figure size'''
rcParams['figure.figsize'] = 10, 10

def analyzeFile(filepath):
    print(f'Processing file: {filepath}')
    filename, extension = os.path.splitext(os.path.basename(filepath))

    '''Creating an output directory'''
    outDir = f'{os.path.dirname(filepath)}/out'
    pathlib.Path(outDir).mkdir(parents=True, exist_ok=True) 


    '''strip empty lines from the input file as this seems to prevent parsing when using non-whitespace delimiters with genfromtxt'''
    strippedPath = f'{outDir}/{filename}_stripped{extension}';
    with open(filepath) as infile, open(strippedPath, 'w') as outfile:
        for line in infile:
            if not line.strip(): continue #skip
            outfile.write(line)

    data = np.genfromtxt(strippedPath,dtype='str',delimiter=",", skip_header=2) if (extension == '.csv') else np.genfromtxt(strippedPath,dtype='str')

    dates = data[:,1]
    dateBins = np.unique(dates)
    maxBins = len(dateBins)*48
    dBmin = []
    dBmax = []

    for i in np.arange(0,len(dateBins)):
        dBmin.append(np.min(np.where(dates==dateBins[i])))
        dBmax.append(np.max(np.where(dates==dateBins[i])))

    timeStr = data[:,2]
    timeHour = []
    timeMin = []

    for j in np.arange(0,len(timeStr)):
        timeHour.append(int(timeStr[j][0:2]))
        timeMin.append(int(timeStr[j][3:5]))

    '''for each 0-23, from 0-29 and 30-59'''
    timeIndex = []

    for k in np.arange(0,len(timeHour)):
        if 0 <= timeMin[k] <= 29:
            timeIndex.append((timeHour[k]*2)+1)
        if 30 <=timeMin[k] <= 59:
            timeIndex.append((timeHour[k]*2)+2)

    '''with n days, assign one of n*48 possible bins to each data point'''
    idxCt = -1
    binIndex = []

    for l in np.arange(0,len(dateBins)):
        for m in np.arange(dBmin[l],dBmax[l]+1):
            idxCt = idxCt+1
            binIndex.append((l*48)+timeIndex[idxCt])

    '''now okay to deal with data'''
    elapsed = data[:,3]
    ctStr = data[:,4]
    counts = ctStr.astype(np.float)

    binCtCount = []    
    binCtMean = []
    for n in np.arange(0,maxBins):
        idx = [p for p, x in enumerate(binIndex) if x == n]
        binCtCount.append(len(idx))
        if n in binIndex:
            binCtMean.append(np.nanmean(counts[idx]))
        else:
            binCtMean.append(0)

    outputTXTFilename = f'{outDir}/{filename}_processed.txt'
    resultTXT = open(outputTXTFilename, 'w')

    outputCSVFilename = f'{outDir}/{filename}_processed.csv'
    resultCSV = open(outputCSVFilename, 'w')

    resultTXT.write("DayIndex\tTimeIndex\tAverageRead\n")
    resultCSV.write("DayIndex,TimeIndex,AverageRead\n")
    sampleIndex = -1;
    for sample in binCtMean:
        sampleIndex = sampleIndex+1
        resultTXT.write(f'{math.floor(sampleIndex/48)}\t{(sampleIndex%48/2.0):.2f}\t{sample}\n')
        resultCSV.write(f'{math.floor(sampleIndex/48)},{(sampleIndex%48/2.0):.2f},{sample}\n')
        
    print(f'Finished writing {outputTXTFilename}')
    print(f'Finished writing {outputCSVFilename}')

    '''Plot the data'''
    #plt.plot(binCtMean)
    scatterPlt = plt.subplot(311)
    plt.scatter(np.linspace(0, len(binCtMean) -1, num=len(binCtMean)), binCtMean, s=1.5)

    '''Sine equation against which to fit'''
    def sin_func(x, a, b, c, d):
        return a * np.sin(b * x + c) + d

    '''Fit whole data set'''
    startIndex = 0
    endIndex = len(binCtMean) - 1
    x_axis = np.linspace(startIndex, endIndex, num=len(binCtMean))
    midpoint = min(binCtMean) + (max(binCtMean) - min(binCtMean)) / 2.
    amplitudeGuess = max(binCtMean) - midpoint
    yOffsetGuess = midpoint
    periodGuess = math.pi * 2 / 48

    global_params, global_params_covariance = optimize.curve_fit(sin_func, x_axis, binCtMean, p0=[amplitudeGuess, periodGuess, 0, yOffsetGuess])
    error = np.sqrt(np.diag(global_params_covariance))
    errorString = [f'{err:3.2}' for err in error] 
    print(f'Estimated error rates of parameters {errorString}')
    plt.subplot(312, sharex=scatterPlt)
    plt.scatter(np.linspace(0, len(binCtMean) -1, num=len(binCtMean)), binCtMean, s=1.5, alpha=0.5)

    global_period = math.floor(math.pi * 2 / global_params[1])
    print(f'Global period for the data set is {global_period}')
    #global_period = 48

    def getXCoordsAtMinima(a, b, c, d, rangeStart, rangeEnd):
        period = abs(math.pi * 2 / b)
        mins = [optimize.fminbound(func = sin_func, x1=rangeStart, x2=rangeEnd, args = (a,b,c,d))]
        forward = mins[0]
        reverse = mins[0]
        while forward < rangeEnd:
            mins.append(forward)
            forward += period
        while reverse > rangeStart:
            mins.append(reverse)
            reverse -= period
        
        return sorted(list(set(mins)))

    def getXCoordsAtMaxima(a, b, c, d, rangeStart, rangeEnd):
        return getXCoordsAtMinima(-a, b, c, d, rangeStart, rangeEnd)

    p = plt.plot(x_axis, sin_func(x_axis, global_params[0], global_params[1], global_params[2], global_params[3]))

    minX = getXCoordsAtMinima(global_params[0], global_params[1], global_params[2], global_params[3], 0, len(binCtMean))
    minY = [sin_func(x, global_params[0], global_params[1], global_params[2], global_params[3]) for x in minX]
    plt.scatter(minX, minY, s=15, marker='v', c=p[0].get_color(), zorder=10) #The minimum

    maxX = getXCoordsAtMaxima(global_params[0], global_params[1], global_params[2], global_params[3], 0, len(binCtMean))
    maxY = [sin_func(x, global_params[0], global_params[1], global_params[2], global_params[3]) for x in maxX]
    plt.scatter(maxX, maxY, s=15, marker='^', c=p[0].get_color(), zorder=10) #The maximum
    
    plt.subplot(313, sharex=scatterPlt)
    plt.scatter(np.linspace(0, len(binCtMean) -1, num=len(binCtMean)), binCtMean, s=1.5, alpha=0.5)

    '''Output curve parameters'''
    outputCurvesFilename = f'{outDir}/{filename}_curves.csv'
    outputCurves = open(outputCurvesFilename, 'w')
    outputCurves.write('#the function params correspond to y = a*sin(b*x + c) + d\n')
    outputCurves.write('subjectiveDayOrGlobal, peak_or_trough, x, y, period, function_paramA, function_paramB, function_paramC, function_paramD\n')
        
    for i,_ in enumerate(minX):
        outputCurves.write(f'global, trough, {minX[i]}, {minY[i]}, {global_period}, {global_params[0]}, {global_params[1]}, {global_params[2]}, {global_params[3]}\n')
    for i,_ in enumerate(maxX):
        outputCurves.write(f'global, peak, {maxX[i]}, {maxY[i]}, {global_period}, {global_params[0]}, {global_params[1]}, {global_params[2]}, {global_params[3]}\n')

    '''Fit per day using global curve parameters'''
    for day in range(0, math.ceil(len(binCtMean) / global_period)):
        startIndex = day * global_period
        endIndex = (day + 1) * global_period - 1

        '''Extending the range a bit on either side'''
        startIndex = max(startIndex - math.floor(global_period/2), 0)
        endIndex = min(endIndex + math.floor(global_period/2), len(binCtMean))
        
        subset = binCtMean[startIndex:(endIndex+1)]

        x_axis = np.linspace(startIndex, endIndex, num=(endIndex - startIndex + 1))
    
        midpoint = min(subset) + (max(subset) - min(subset)) / 2.
        amplitudeGuess = max(subset) - midpoint
        yOffsetGuess = global_params[3]
        periodGuess = global_params[1]
    
        try:
            params, params_covariance = optimize.curve_fit(sin_func, x_axis, subset, p0=[amplitudeGuess, periodGuess, 0, yOffsetGuess])
            error = np.sqrt(np.diag(params_covariance))
            errorString = [f'{err:3.2}' for err in error] 
            print(f'Estimated error rates of parameters {errorString}')
            p = plt.plot(x_axis, sin_func(x_axis, params[0], params[1], params[2], params[3]))
            a = params[0]
            b = params[1]
            c = params[2]
            d = params[3]
            period = math.floor(math.pi * 2 / b)

            minX = getXCoordsAtMinima(a, b, c, d, startIndex, endIndex)
            minY = [sin_func(x, a, b, c, d) for x in minX]
            plt.scatter(minX, minY, s=15, marker='v', c=p[0].get_color(), zorder=10) #The minimum

            maxX = getXCoordsAtMaxima(a, b, c, d, startIndex, endIndex)
            maxY = [sin_func(x, a, b, c, d) for x in maxX]
            plt.scatter(maxX, maxY, s=15, marker='^', c=p[0].get_color(), zorder=10) #The maximum

            for i,_ in enumerate(minX):
                outputCurves.write(f'{day}, trough, {minX[i]}, {minY[i]}, {period}, {a}, {b}, {c}, {d}\n')
            for i,_ in enumerate(maxX):
                outputCurves.write(f'{day}, peak, {maxX[i]}, {maxY[i]}, {period}, {a}, {b}, {c}, {d}\n')
            
        except:
            print(f'Failed fitting curves to day {day} of {filename}')
        
    plotFilename = f'{outDir}/{filename}_plot.png'
    plt.savefig(plotFilename)
    plt.close()
    print(f'Finished plotting {plotFilename}')

'''argv contains a list of the arguments including the script name, so for example: "python script.py 1 2 3" would have argv = [script.py, 1, 2, 3]'''
if len(sys.argv) != 2:
    print("You need to specify exactly 1 argument:\n  python BinningTest.py file_or_folder_name")
    sys.exit()

Path = sys.argv[1]

filename, extension = os.path.splitext(Path)
if not extension:
    print(f'Extension-less input ({filename}) assumed to be folder')
    filesInFolder = [f for f in os.listdir(Path) if os.path.isfile(os.path.join(filename, f))]
    print(f'Found {len(filesInFolder)} files: {filesInFolder}')
    for file in filesInFolder:
        analyzeFile(f'{Path}/{file}')
else:
    '''If we're here it's a single file'''
    analyzeFile(os.path.abspath(Path))

Software Heritage — Copyright (C) 2015–2025, The Software Heritage developers. License: GNU AGPLv3+.
The source code of Software Heritage itself is available on our development forge.
The source code files archived by Software Heritage are available under their own copyright and licenses.
Terms of use: Archive access, API— Contact— JavaScript license information— Web API

back to top