% Generated by roxygen2: do not edit by hand % Please edit documentation in R/point_estimate.R \name{point_estimate} \alias{point_estimate} \alias{point_estimate.numeric} \alias{point_estimate.stanreg} \alias{point_estimate.brmsfit} \alias{point_estimate.BFBayesFactor} \alias{point_estimate.get_predicted} \title{Point-estimates of posterior distributions} \usage{ point_estimate(x, ...) \method{point_estimate}{numeric}(x, centrality = "all", dispersion = FALSE, threshold = 0.1, ...) \method{point_estimate}{stanreg}( x, centrality = "all", dispersion = FALSE, effects = c("fixed", "random", "all"), component = c("location", "all", "conditional", "smooth_terms", "sigma", "distributional", "auxiliary"), parameters = NULL, ... ) \method{point_estimate}{brmsfit}( x, centrality = "all", dispersion = FALSE, effects = c("fixed", "random", "all"), component = c("conditional", "zi", "zero_inflated", "all"), parameters = NULL, ... ) \method{point_estimate}{BFBayesFactor}(x, centrality = "all", dispersion = FALSE, ...) \method{point_estimate}{get_predicted}( x, centrality = "all", dispersion = FALSE, use_iterations = FALSE, verbose = TRUE, ... ) } \arguments{ \item{x}{Vector representing a posterior distribution, or a data frame of such vectors. Can also be a Bayesian model. \strong{bayestestR} supports a wide range of models (see, for example, \code{methods("hdi")}) and not all of those are documented in the 'Usage' section, because methods for other classes mostly resemble the arguments of the \code{.numeric} or \code{.data.frame}methods.} \item{...}{Additional arguments to be passed to or from methods.} \item{centrality}{The point-estimates (centrality indices) to compute. Character (vector) or list with one or more of these options: \code{"median"}, \code{"mean"}, \code{"MAP"} (see \code{\link[=map_estimate]{map_estimate()}}), \code{"trimmed"} (which is just \code{mean(x, trim = threshold)}), \code{"mode"} or \code{"all"}.} \item{dispersion}{Logical, if \code{TRUE}, computes indices of dispersion related to the estimate(s) (\code{SD} and \code{MAD} for \code{mean} and \code{median}, respectively). Dispersion is not available for \code{"MAP"} or \code{"mode"} centrality indices.} \item{threshold}{For \code{centrality = "trimmed"} (i.e. trimmed mean), indicates the fraction (0 to 0.5) of observations to be trimmed from each end of the vector before the mean is computed.} \item{effects}{Should results for fixed effects, random effects or both be returned? Only applies to mixed models. May be abbreviated.} \item{component}{Should results for all parameters, parameters for the conditional model or the zero-inflated part of the model be returned? May be abbreviated. Only applies to \pkg{brms}-models.} \item{parameters}{Regular expression pattern that describes the parameters that should be returned. Meta-parameters (like \code{lp__} or \code{prior_}) are filtered by default, so only parameters that typically appear in the \code{summary()} are returned. Use \code{parameters} to select specific parameters for the output.} \item{use_iterations}{Logical, if \code{TRUE} and \code{x} is a \code{get_predicted} object, (returned by \code{\link[insight:get_predicted]{insight::get_predicted()}}), the function is applied to the iterations instead of the predictions. This only applies to models that return iterations for predicted values (e.g., \code{brmsfit} models).} \item{verbose}{Toggle off warnings.} } \description{ Compute various point-estimates, such as the mean, the median or the MAP, to describe posterior distributions. } \note{ There is also a \href{https://easystats.github.io/see/articles/bayestestR.html}{\code{plot()}-method} implemented in the \href{https://easystats.github.io/see/}{\pkg{see}-package}. } \examples{ \dontshow{if (require("rstanarm") && require("emmeans") && require("brms") && require("BayesFactor")) (if (getRversion() >= "3.4") withAutoprint else force)(\{ # examplesIf} library(bayestestR) point_estimate(rnorm(1000)) point_estimate(rnorm(1000), centrality = "all", dispersion = TRUE) point_estimate(rnorm(1000), centrality = c("median", "MAP")) df <- data.frame(replicate(4, rnorm(100))) point_estimate(df, centrality = "all", dispersion = TRUE) point_estimate(df, centrality = c("median", "MAP")) \donttest{ # rstanarm models # ----------------------------------------------- model <- rstanarm::stan_glm(mpg ~ wt + cyl, data = mtcars) point_estimate(model, centrality = "all", dispersion = TRUE) point_estimate(model, centrality = c("median", "MAP")) # emmeans estimates # ----------------------------------------------- point_estimate( emmeans::emtrends(model, ~1, "wt", data = mtcars), centrality = c("median", "MAP") ) # brms models # ----------------------------------------------- model <- brms::brm(mpg ~ wt + cyl, data = mtcars) point_estimate(model, centrality = "all", dispersion = TRUE) point_estimate(model, centrality = c("median", "MAP")) # BayesFactor objects # ----------------------------------------------- bf <- BayesFactor::ttestBF(x = rnorm(100, 1, 1)) point_estimate(bf, centrality = "all", dispersion = TRUE) point_estimate(bf, centrality = c("median", "MAP")) } \dontshow{\}) # examplesIf} } \references{ Makowski, D., Ben-Shachar, M. S., Chen, S. H. A., and Lüdecke, D. (2019). \emph{Indices of Effect Existence and Significance in the Bayesian Framework}. Frontiers in Psychology 2019;10:2767. \doi{10.3389/fpsyg.2019.02767} }