Skip to main content
  • Home
  • Development
  • Documentation
  • Donate
  • Operational login
  • Browse the archive

swh logo
SoftwareHeritage
Software
Heritage
Archive
Features
  • Search

  • Downloads

  • Save code now

  • Add forge now

  • Help

  • c790f1e
  • /
  • structureSim.rd
Raw File Download
Permalinks

To reference or cite the objects present in the Software Heritage archive, permalinks based on SoftWare Hash IDentifiers (SWHIDs) must be used.
Select below a type of object currently browsed in order to display its associated SWHID and permalink.

  • content
  • directory
content badge Iframe embedding
swh:1:cnt:b0c0dedc6aec3fef249788ce0c4e069b8a461a7a
directory badge Iframe embedding
swh:1:dir:c790f1e33a5232044be137009743a5c8e7692d25
Citations

This interface enables to generate software citations, provided that the root directory of browsed objects contains a citation.cff or codemeta.json file.
Select below a type of object currently browsed in order to generate citations for them.

  • content
  • directory
Generate software citation in BibTex format (requires biblatex-software package)
Generating citation ...
Generate software citation in BibTex format (requires biblatex-software package)
Generating citation ...
structureSim.rd
\name{structureSim}
\alias{structureSim}
\title{ Population or Simulated Sample Correlation Matrix from a Given Factor Structure Matrix}

\description{
 The \code{structureSim} function return a population and a sample correlation
 matrices from a predefined congeneric factor structure.
 }

\usage{
 structureSim(fload, reppar=30, repsim=100, N, quantile=0.95,
              model="components", adequacy=FALSE, details=TRUE,
              r2limen=0.75, all=FALSE)
 }

\arguments{
  \item{fload}{     matrix:    loadings of the factor structure}
  \item{reppar}{    numeric:   number of replication for the parallel analysis}
  \item{repsim}{    numeric:   number of replication of the matrix correlation
                    simulation}
  \item{N}{         numeric:   number of subjects}
  \item{quantile}{  numeric:   quantile for the parallel analysis}
  \item{model}{     character: \code{"components"} or \code{"factors"} }
  \item{adequacy}{  logical:   if \code{TRUE} print the recovered population
                    matrix from the factor structure}
  \item{details}{   logical:   if \code{TRUE} output details of the
                    \code{repsim} simulations }
  \item{r2limen}{   numeric:   R2 limen value for the R2 index of Nelson}
  \item{all}{       logical:   if \code{TRUE} computes athe Bentler and Yuan
                    index (very long computating time to consider)}
 }

\value{
  \item{values}{ the output depends of the logical value of details. If \code{FALSE},
                 returns only statistics about the eigenvalues: mean, median, quantile,
                 standard deviation, minimum and maximum. If \code{TRUE},
                 returns also details about the \code{repsim} simulations.
                 If \code{adequacy} = \code{TRUE} return the recovered factor structure}
 }

\seealso{
 \code{\link{principalComponents}},
 \code{\link{iterativePrincipalAxis}},
 \code{\link{rRecovery}}
 }

\references{
  Zwick, W. R. and Velicer, W. F. (1986). Comparison of five rules for
   determining the number of components to retain. \emph{Psychological bulletin, 99}, 432-442.
 }

\author{ 
    Gilles Raiche \cr
    Centre sur les Applications des Modeles de Reponses aux Items (CAMRI) \cr
    Universite du Quebec a Montreal\cr
    \email{raiche.gilles@uqam.ca}, \url{http://www.er.uqam.ca/nobel/r17165/}
 }

\examples{
# .......................................................
# Example inspired from Zwick and Velicer (1986, table 2, p. 437)
## ...................................................................
 nFactors  <- 3
 unique    <- 0.2
 loadings  <- 0.5
 nsubjects <- 180
 repsim    <- 30
 zwick     <- generateStructure(var=36, mjc=nFactors, pmjc=12,
                                loadings=loadings,
                                unique=unique)
## ...................................................................

# Produce statistics about a replication of a parallel analysis on
# 30 sampled correlation matrices

 mzwick.fa <-  structureSim(fload=as.matrix(zwick), reppar=30,
                            repsim=repsim, N=nsubjects, quantile=0.5,
                            model="factors")

 mzwick    <-  structureSim(fload=as.matrix(zwick), reppar=30,
                            repsim=repsim, N=nsubjects, quantile=0.5, all=TRUE)

# Very long execution time that could be used only with model="components"
# mzwick    <-  structureSim(fload=as.matrix(zwick), reppar=30,
#                            repsim=repsim, N=nsubjects, quantile=0.5, all=TRUE)

 par(mfrow=c(2,1))
 plot(x=mzwick,    nFactors=nFactors, index=c(1:14), cex.axis=0.7, col="red")
 plot(x=mzwick.fa, nFactors=nFactors, index=c(1:11), cex.axis=0.7, col="red")
 par(mfrow=c(1,1))

 par(mfrow=c(2,1))
 boxplot(x=mzwick,    nFactors=3, cex.axis=0.8, vLine="blue", col="red")
 boxplot(x=mzwick.fa, nFactors=3, cex.axis=0.8, vLine="blue", col="red",
         xlab="Components")
 par(mfrow=c(1,1))
# ......................................................
 }

\keyword{ multivariate }

Software Heritage — Copyright (C) 2015–2025, The Software Heritage developers. License: GNU AGPLv3+.
The source code of Software Heritage itself is available on our development forge.
The source code files archived by Software Heritage are available under their own copyright and licenses.
Terms of use: Archive access, API— Contact— JavaScript license information— Web API

back to top